×

The action of conformal transformations on a Riemannian manifold. (English) Zbl 0866.53027

“The following assertion was accepted for twenty years when, in 1992, R. J. Zimmer and K. R. Gutschera discovered a very important gap in the only known proof of it:
Theorem A. Let \(C(M)\) be the whole conformal group of a Riemannian manifold \(M\) with \(\dim M=n\geq 2\). If \(M\) is not conformally equivalent with \(S^n\) or \(E^n\), then \(C(M)\) is inessential, i.e., can be reduced to a group of isometries by a conformal change of metric.”
The author’s purpose is to give a new, independent proof of the theorem.

MathOverflow Questions:

Conformal covers of all degrees

MSC:

53C20 Global Riemannian geometry, including pinching
57S05 Topological properties of groups of homeomorphisms or diffeomorphisms
53A30 Conformal differential geometry (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] D.V. Alekseevskii, Groups of transformations of Riemannian spaces. Mat. Sbornik89 (131) (1972) no 2 and Math. USSR Sbornik18 (1972) no 2, 285-301 · Zbl 0263.53029
[2] D.V. Alekseevskii, Uspehi Mat. Nauk28 (1973) no 5, 225-226 (Russian)
[3] N. Bourbaki, Topologie G?n?rale Ch III. Hermann Paris
[4] J. Lelong-Ferrand, Transformations conformes et quasi-conformes des vari?t?s riemanniennes compactes. Mem. Acad. Royale de Belgique 39 no 5 (1971) 1-44; summed up in C.R.A.S. Paris269 (1969) 583-586 · Zbl 0201.09701
[5] J. Lelong-Ferrand, Invariants conformes globaux sur les vari?t?s riemanniennes. J. Diff. Geo.8 (1973), 487-510; summed up in C.R.A.S. Paris275 (1972) 119-122 · Zbl 0274.53046
[6] J. Lelong-Ferrand, Construction de modules de continuit? dans le cas limite de Soboleff et applications ? la g?om?trie diff?rentielle. Arch. for Rat. Mech. and An. 52, no 4 (1973) 297-311; summed up in C.R.A.S. Paris, 276-300 · Zbl 0274.53045
[7] J. Lelong-Ferrand, Geometrical interpretation of scalar curvature and regularity of conformal homeomorphisms. Differential geometry and relativity. D. Reidel, Dordrecht 1976, 91-105
[8] J. Lelong-Ferrand, Regularity of conformal mappings of Riemannian manifolds. Proc. Romanian Finnish Seminar Bucharest 1976, Lecture Notes no 743 (1979), Springer-Verlag, 197-203 · Zbl 0345.53028
[9] J. Lelong-Ferrand, Sur un lemme d’Aleksevskii relatif aux transformations conformes. C.R.A.S. Paris,284 (1977) 121-123 · Zbl 0339.53028
[10] J. Ferrand, Le groupe des automorphismes conformes d’une vari?t? de Finsler compacte. C.R.A.S. Paris291 (1980) 209-210 · Zbl 0451.53051
[11] J. Ferrand, Conformal capacities and conformally invariant functions on Riemannian manifolds (to appear in Geometriae Dedicata). Summed up in C.R.A.S. Paris t. 218 S?rie I (1994) 213-216 · Zbl 0794.53024
[12] J. Ferrand, Convergence and degeneration of quasiconformal maps of Riemannian manifolds (to appear,in J. Analyse Math.) · Zbl 0813.53023
[13] K.R. Gutschera, Invariant metrics for groups of conformal transformations (preprint) · Zbl 0858.58028
[14] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, Interscience publishers, London 1963 · Zbl 0119.37502
[15] N.H. Kuiper, On conformally-flat spaces in the large. Ann. Math.50 (1949) 916-924 · Zbl 0041.09303
[16] J. Lafontaine, The theorem of Lelong-Ferrand and Obata. Conformal geometry, Ed. by S. Kulkarni and U. Pinkall, Max Planck Inst. f?r Math. Bonn (1988) · Zbl 0668.53022
[17] G.D. Mostow, Quasiconformal mappings inn-space and the rigidity of hyperbolic space forms. Inst Hautes Etudes Sci. Publi. Math.34 (1968) 53-104 · Zbl 0189.09402
[18] S.B. Myers and N. Steenrod, The group of isometries of a Riemannian manifold. Ann. Math.40 (1939) 400-416 · Zbl 0021.06303
[19] M. Obata, Conformal transformations of Riemannian manifolds. J. Diff. Geo.6 (1971) 247-258 · Zbl 0236.53042
[20] M. Obata, The conjectures about conformal transformations. J. Diff. Geo.6 (1971) 247-258 · Zbl 0236.53042
[21] P. Pansu, Distances conformes et cohomologieL n . Publ. Math. Universit? Pierre et Marie Curie, Paris, no 92 (G?ometrie Riemannanienne conforme) (1990) 69-77
[22] J. V?is?l?, Lectures onn-dimensional quasiconformal mappings. Lecture Notes in Math. Vol. 229, Springer-Verlag 1971
[23] M. Vuorinen, Conformal geometry and quasiregular mappings. Lecture Notes in Math. Vol. 1319, Springer-Verlag 1988 · Zbl 0646.30025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.