×

zbMATH — the first resource for mathematics

Geodesic mappings of affine-connected and Riemannian spaces. (English) Zbl 0866.53028
The author gives a review of geodesic mappings. The fundamental paragraphs of the review are: 1) General problems of geodesic mappings; 2) concircular vector fields and geodesic mappings; 3) geodesic mappings and deformation of surfaces; 4) geodesic mappings of generalized semisymmetric space; 5) geodesic mappings from Einsteinian spaces and their generalizations; 6) geodesic mappings of Kählerian and almost Hermitian spaces; 7) spaces not admitting nontrivial geodesic mappings and projective transformations.

MSC:
53C22 Geodesics in global differential geometry
53-02 Research exposition (monographs, survey articles) pertaining to differential geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. V. Aminova, ”Projective-group properties of some Riemannian spaces,” In:Tr. Geometr. Sem. Vol. 6, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1974), pp. 295–316.
[2] A. V. Aminova, ”Groups of transformations of Riemannian manifolds,” In:Problemy Geometrii, Vol. 22, Itogi Nauki i Tekhn., All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1990), pp. 97–166. · Zbl 0735.53026
[3] A. V. Aminova and T. P. Toguleva, ”Projective and affine motions determined by concircular vector fields,” In:Gravitazia i Teoria Otnositelnosti, Kazan’skii Univ., Kazan’ (1976), pp. 139–153.
[4] D. V. Beklemishev, ”Differential geometry of spaces with almost complex structure,” In:Geometriya. Itogi Nauki i Tekhn., All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1965), pp. 165–212.
[5] V. V. Vishnevskii, ”On a parabolical analogy ofA-spaces,”Izv. Vuzov. Mat.,1, 29–38 (1968).
[6] V. V. Vishnevski, A. P. Shirokov, and V. V. Shurigin,Spaces over Algebras [In Russian], Kazanskii Univ., Kazan’ (1987).
[7] M. L. Gavrilchenko and J. Mikeš, ”On solutions of a system of differential equations in covariant derivatives,” In:Resp. Sci. Conf. ”Differ. and Integr. Equations and their Applications,” Abstracts of Reports. Part I, Odessk. Univ., Odessa (1987), pp. 55–56.
[8] E. Z. Gorbatyi, ”On a geodesic mapping from equidistant Riemannian spaces and first-class spaces,”Ukr. Geom. Sb.,12, 45–53 (1982).
[9] I. V. Gribkov, ”A characteristic property of Riemannian and pseudo-Riemannian metric with general geodesics,” In: VIIIAll-Union Conf. on Modern Problems of Differential Geometry, Abstracts of Reports, Odessa (1984).
[10] I. P. Egorov,Motion in Spaces with Affine Connection [In Russian], Kazanskii Univ., Kazan’ (1965). · Zbl 0151.13305
[11] I. P. Egorov, ”Motion in generalized differentially geometrical spaces,” In:Algebra. Topologiya. Geometriya. Itogi Nauki i Tekhn., All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1967), pp. 375–428.
[12] I. P. Egorov, ”Authomorphisms in generalized spaces,” In:Problemy Geometrii, Vol. 10,Itogi Nauki i Tekhn., All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1978), pp. 147–191.
[13] V. F. Kagan,Principles of the Theory of Surfaces. Part 2 [In Russian], OGIZ, Moscow-Leningrad (1948).
[14] V. F. Kagan,Subprojective Spaces [in Russian], Fizmatgiz, Moscow (1961).
[15] V. R. Kaigorodov, ”On Riemannian spacesD n m ,” In:Tr. Geometr. Sem., Vol. 5,Itogi Nauki i Tekhn., All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1974), pp. 359–373.
[16] V. R. Kaigorodov, ”Structure of curvature of space-time,” In:Problemy Geometrii, Vol. 14,Itogi Nauki i Tekhn., All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1983), pp. 177–204.
[17] A. V. Karmasina and I. N. Kurbatova, ”On some problems of geodesic mappings of almost Hermitian spaces,” Odessk. Ped. Inst. (1990); Deposited at Ukr. NIINTI, Kiev, 12.3.90, No. 458-Uk90 (1990).
[18] V. A. Kiosak, ”On global geodesic mappings of special Riemannian spaces,” Odessk. Univ. (1989); Deposited at Ukr. NIINTI, Kiev, 5.1.89, No. 176-Uk89 (1989).
[19] V. A. Kiosak, ”On Riemannian spacesL n ,” In: IIIVses. Shk. ”Pontrjaginskie Chteniya”, Optim. Upravl., Geometriya i Analiz, Kemerovo (1990).
[20] V. A. Kiosak, ”On equidistant Riemannian spaces,” In:Geometry of Generalized Spaces [In Russian], Penza (1992), pp. 60–65.
[21] V. A. Kiosak, I. N. Kurbatova, J. Mikeš, and N. V. Yablonskaya, ”Geodesic mappings and some of their generalizations,” In:Interregional Scientific Working Conference of Young Scientists Dedicated to the 60th Anniversary of USSR, Abstracts of Reports, Part II (1983), pp. 6–7.
[22] V. A. Kiosak and J. Mikeš, ”On the degree of mobility of Riemannian spaces with respect to geodesic mappings,” In:Geometriya Pogruzh. Mnogoobraz., Moscow (1986), pp. 35–39.
[23] V. A. Kiosak and J. Mikeš, ”Geodesic mappings and projective transformations of Riemannian spaces,” In:Int. Sci. Proc.: Motion in General Spaces, Ryazansk. Ped. Inst., Ryazan’ (1988), pp. 29–31. · Zbl 0674.53028
[24] G. I. Kruchkovich, ”Riemannian and pseudo-Riemannian spaces,” In:Algebra. Topologiya. Geometriya. Itogi Nauki i Tekhn., All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1968), pp. 191–220.
[25] G. I. Kruchkovich, ”On spaces and their geodesic mappings,” In:Trudy Vsesoyuzn. Zaochn. Energ. Inst., Vol. 33, Moscow (1967), pp. 3–18.
[26] Ü. G. Lumiste, ”Semisymmetric submanifolds,” In:Problemy Geometrii, Vol. 23, Itogi Nauki i Tekhn., All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1991), pp. 3–28. · Zbl 0747.53045
[27] J. Mikeš, ”Geodesic mappings of semisymmetric Riemannian spaces,” Odessk. Univ. (1976); Deposited at VINITI, 11.11.76, No. 3924-76 (1976).
[28] J. Mikeš, ”On some classes of Riemannian spaces locked respectively to geodesic mappings,” In: VIIAll-Union Conf. Modern Diff. Geom., Minsk (1979).
[29] J. Mikeš, ”On geodesic mappings of Ricci-2-symmetric Riemannian spaces,”Mat. Zametki,28, No. 2, 313–317 (1980). · Zbl 0442.53023
[30] J. Mikeš, ”On geodesic mappings of Einsteinian spaces,”Mat. Zametki,28, No. 6, 935–939 (1980).
[31] J. Mikeš, ”Projectively symmetric and projectively recurrent spaces of an affine connection,” In:Tr. Geometr. Sem., Vol. 13, Kazan’ (1981), pp. 61–62.
[32] J. Mikeš, ”On equidistant Kahlerian spaces,”Mat. Zametki,38, No. 4, 625–633 (1985).
[33] J. Mikeš, ”On Sasakian and equidistant Kählerian spaces,”Dokl. Akad. Nauk SSSR,291, No. 1, 33–36 (1986).
[34] J. Mikeš, ”On concircular global vector fields on compact Riemannian spaces,” Odessk. Univ. (1988); Deposited at Ukr. NIINTI, Kiev, 02.03.88, No. 615-Uk88 (1988).
[35] J. Mikeš, ”On evaluations of groups orders of projective transformations of Riemannian spaces,”Mat. Zametki,43, No. 2, 256–262 (1988). · Zbl 0649.53011
[36] J. Mikeš, ”On the existence of n-dimensional compact Riemannian spaces, which admit global nontrivial projective transformations,”Dokl. Akad. Nauk SSSR,305, No. 3, 534–536 (1989).
[37] J. Mikeš, ”On geodesic and quasigeodesic global mappings of Riemannian spaces with boundary,” In:All-Union Colloquium of Young Scientists Dedicated to the 80th Anniversary of Birth of N. V. Efimov, Abstracts of Reports, Abrau Dyurso, Rostov-on-Don (1990).
[38] J. Mikeš, ”On geodesic and holomorphically projective mappings of generallym-recurrent Riemannian spaces,”Sib. Mat. Zh. Novosibirsk (1991); Deposited at VINITI, 12.03.91, No. 1059-B91 (1991).
[39] J. Mikeš, ”On geodesic mappings of special Riemannian spaces,” In:Resp. Scientific Working Conference Dedicated to the 200th Anniversary of Birth of N. I. Lobachevski, Abstracts of Reports, Part I, Odessa (1992), p. 80.
[40] J. Mikeš, ”On geodesic and holomorphically projective mappings of compact semisymmetric and Riccisemisymmetric spaces,” In:International Scientific Conference, Abstracts of Reports, Part. I, Kazan’ (1992), pp. 63–64.
[41] J. Mikeš and V. A. Kiosak, ”On geodesic mappings of four-dimensional Einsteinian spaces,” Odessk. Univ. (1982); Deposited at VINITI, 9.04.82, No. 1678-82 (1982).
[42] J. Mikeš and V. A. Kiosak, ”On geodesic mappings of special Riemannian spaces,” Odessk. Univ. (1985), Deposited at Ukr. NIINTI, Kiev, 5.5.85, No. 904-85 (1985).
[43] J. Mikeš, V. A. Kiosak, and A. Ya. Sultanov, ”On special projective vectors,” In:International Scientific Working Conference of Young Scientists, Abstracts of Reports, Part III, Odessa (1987).
[44] J. Mikeš and Dj. Moldobayev, ”On some algebraic properties of tensors,” In:Issled. po Neevklid. Geom., Kirghyz. Univ., Frunze (1982), pp. 60–64.
[45] J. Mikeš and Dj. Moldobayev, ”On the distribution of groups orders of conformal transformations of Riemannian spaces,”Izv. Vuzov. Mat.,12, 24–29 (1991).
[46] J. Mikeš, Dj. Moldobayev, and A. Sabykanov, ”On recurrent equiaffine projectively Euclidean spaces,” In:Issled. po Topol. i Geometrii, Kirghyz. Univ., Bishkek (1991), pp. 46–52.
[47] J. Mikeš and S. M. Pokas, ”Lie-groups of second order transformations in associated Riemannian spaces,” Odessk. Univ. (1981); Deposited at VINITI, 30.10.81, No. 4988-81 (1981).
[48] J. Mikeš and V. S. Sobchuk, ”On geodesic mappings of three-dimensional Riemannian spaces,”Ukr. Geom. Sb.,34, 80–83 (1991). · Zbl 0787.53042
[49] J. Mikeš and G. A. Starko, ”On hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces,”Ukr. Geom. Sb.,32, 92–98 (1989). · Zbl 0711.53042
[50] J. Mikeš and O. S. Tolobayev, ”Symmetric and projectively symmetric spaces of an affine connection,” In:Issled. po Topol. i Obobshch. Prostranstvam, Kirghyz. Univ., Frunze (1988), pp. 58–63.
[51] V. A. Mirzoyan, ”Ric-semisymmetric submanifolds,” In:Problemy Geometrii, Vol. 23, Itogi Nauki i Tekhn., All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1991), pp. 29–66. · Zbl 0746.53042
[52] A. P. Norden,Spaces of an Affine Connection [In Russian], Nauka, Moscow (1976). · Zbl 0925.53007
[53] A. Z. Petrov,New Methods in Theory of General Relativity [In Russian], Nauka, Moscow (1966). · Zbl 0161.22602
[54] V. A. Piliposyan, ”On geodesic mappings of tangential stratifications of Riemannian manifolds with complete lift metrics,” In:Tr. Geometr. Sem., Vol. 18, Kazan’ (1988), pp. 69–89. · Zbl 0675.53017
[55] A. V. Pogorelov, ”On some theorem of Beltrami,”Dokl. Akad. Nauk SSSR,316, No. 2, 297–299 (1991). · Zbl 0749.53009
[56] S. M. Pokas and N. V. Yablonskaya, ”On special almost geodesic mappings of affine-connected and Riemannian spaces,”Abstr. Colloq. Different. Geom. Eger (Hunary), 45–50 (1987–1988).
[57] J. Radulovič and J. Mikeš, ”On geodesic and F-planar mappings of conformally Kählerian spaces,” In:Internat. Sci. Conf. ”Lobachevski and Modern Geometry,” Abstracts of Reports, Part. I, Kazan’ (1992).
[58] P. K. Rashevskii, ”Scalar field in stratified space,” In:Tr. Sem. po Vekt. i Tenz. Anal., Vol. 6 (1948).
[59] D. I. Rosenfeld, ”Geodesic correspondence of conformally flat Riemannian spaces,”Ukr. Geom. Sb.,5–6, No. 6, 139–146 (1968).
[60] D. I. Rosenfeld and E. Z. Gorbaty, ”On geodesic mappings of Riemannian spaces onto conformally flat Riemannian spaces,”Ukr. Geom. Sb.,12, 115–124 (1972).
[61] A. Sabykanov, J. Mikeš, and Dj. Moldobayev, ”Recurrent equiaffine projectively Euclidean spaces,” In:Reps. Scientific Working Conference Dedicated to 200th Anniversary of Birth of N. I. Lobachevski, Abstracts of Reports, Part I, Odessa (1992), p. 80.
[62] N. S. Sinyukov,Geodesic Mappings of Riemannian Spaces [in Russian], Nauka, Moscow (1979). · Zbl 0637.53020
[63] N. S. Sinyukov, ”Lie-groups of projective transformations of equidistant spaces,” In:Ninth All-Union Conference on Geometry, Abstracts of Reports, Kishinev (1988), pp. 285–286.
[64] N. S. Sinyukov, I. N. Kurbatova, and J. Mikeš,Holomorphically Projective Mappings on Kählerian Spaces [In Russian], Odess. Univ., Odessa (1985).
[65] N. S. Sinyukov and J. Mikeš, ”On geodesic and holomorphically projective mappings of some Riemannian spaces,” In:Fifth Pribalt. Geom. Conf., Abstract of Reports, Druskininkay (1978).
[66] N. S. Sinyukov and S. M. Pokas, ”Second-order motion groups in associative Riemannian spaces,” In:Dvizheniya v Obobshchennykh Prostranstvakh, Ryazansk. Ped. Inst., Ryazan’ (1985), pp. 30–36.
[67] N. S. Sinyukov and E. N. Sinyukova, ”On global geodesic mappings of generally twice recurrent Riemannian spaces,” In:Seventh Pribalt. Conf. on Modern Differential Geometry, Tallinn (1984), pp. 106–107. · Zbl 0577.53046
[68] E. N. Sinyukova, ”On geodesic mappings of some special Riemannian spaces,”Mat. Zametki,30, No. 6, 889–894 (1981). · Zbl 0505.53005
[69] E. N. Sinyukova, ”On global geodesic mappings of some special Riemannian spaces,” [In Russian], Odessk. Univ., Odessa (1982); Deposited at VINITI, 20.07.82, No. 3892-82 (1982).
[70] E. N. Sinyukova, ”Geodesic mappings of spacesL n,”Izv. Vuzov. Mat.,3, No. 82, 57–61 (1982). · Zbl 0496.53011
[71] E. N. Sinyukova, ”On global geodesic mappings of Riemannian spaces, satisfying some inequality-type conditions,” In:Interregional Scientific Working Conference of Young Scientists Dedicated to the 60th Anniversary of USSR, Abstracts of Reports, Part II Abstracts of Reports, Part II, Odessa (1983), pp. 16–18.
[72] E. N. Sinyukova, ”Some problems of the theory of global geodesic mappings of Riemannian spaces,” In:Ninth All-Union Conference on Geometry, Abstracts of Reports, Kishinev (1988), pp. 286–287.
[73] V. S. Sobchuk, ”Ricci-generalized-symmetric Riemannian spaces admit nontrivial geodesic mappings,”Dokl. Akad. Nauk SSSR,267, No. 4, 793–795 (1982). · Zbl 0524.53024
[74] V. S. Sobchuk, ”Investigations on the theory of geodesic mappings and their generalizations,” In:Differents.-Geometr. Struct. na Mnogoobr., Chernovits. Univ., Chernovtzy (1991); Deposited at VINITI, 05.02.91, No. 562-91B (1991). pp. 196–208.
[75] V. S. Sobchuk, ”On geodesic mappings of Ricci 4-symmetric Riemannian spaces,”Izv. Vuzov. Mat., No. 4, 69–70 (1991). · Zbl 0738.53009
[76] V. S. Sobchuk, ”Some properties ofR-K-spaces admitting geodesic mappings,” In:Resp. Sci. Working Conference Dedicated to the 80th Anniversary of Birth of N. I. Lobachevski, Abstracts of Reports. Part I, Odessa (1992), pp. 92–93.
[77] V. S. Sobchuk, D. R. Laitarchuk, and O. G. Stangret, ”Geodesic mappings of m-symmetric and generallym-recurrent Riemannian spaces” In:All-Union Conference on Geometry in the Large, Abstracts of Reports, Novosibirsk (1988), p. 114.
[78] A. S. Solodovnikov, ”Geodesic classes of spacesV(K),”Dokl. Akad. Nauk SSSR,3, No. 1, 33–36 (1956). · Zbl 0073.17101
[79] A. S. Solodovnikov, ”Geodesic description of all possible forms of Riemannian metrics in the form of Levi-Civita,” In:Tr. Sem. Vect. Tenz. Anal., Vol. 12 (1963), pp. 131–173. · Zbl 0163.43302
[80] I. A. Shouten and D. J. Struik,Introduction to New Methods of Differential Geometry, Ch. 1 [In Russian], Gostekhizdat, Moscow-Leningrad (1939).
[81] G. N. Timofeev, ”Projectively symmetric spaces of an affine connection,” In:All-Union Scientific Conference on non-Euclidean Geometry, 150th Anniversary of Lobachevski’s Geometry, Abstracts of Reports, Kazan’ (1976).
[82] E. V. Ferapontov, ”Autotransformations by solution and hydrodynamical symmetries,”Differents. Uravn.,27, No. 7, 1250–1263 (1991).
[83] V. E. Fomin, ”On geodesic mappings of infinite-dimensional Riemannian spaces onto symmetric spaces of an affine connection,” In:Tr. Geometr. Sem., Vol. 11, Kazan’ (1979), pp. 93–99.
[84] V. E. Fomin, ”A pair of infinite-dimensional Levi-Civita spaces can have no general geodesic,” In:Tr. Geom. Semin., Vol. 17, Kazan’ (1986), pp. 79–83. · Zbl 0614.58006
[85] I. I. Tsiganok,Torse-Forming Vector Fields and Groups of Affine Homotheties, Webs, and Quasigroups [in Russian], Kalinin (1988).
[86] Kh. Shadyev, ”Projective transformations of a synectic connection in tangential stratification,”Izv. Vuzov. Mat.,9, 75–77 (1987). · Zbl 0637.53015
[87] I. G. Shandra, ”On the problem of geodesic mappings of Riemannian spaces,” In:Resp. Scientific Working Conference Dedicated to the 200th Anniversary of Birth of N. I. Lobachevski, Abstracts of Reports. Part I, Odessa (1992), pp. 99–100.
[88] I. G. Shandra, ”Spaces and Jordan algebra,” In:Collection of Works in Honor of Lobachevski, Kazan’ (1992), pp. 99–104. · Zbl 0771.53010
[89] Ya. L. Shapiro, ”On geodesic fields of many-dimensional directions,”Dokl. Akad. Nauk SSSR,32, No. 4, 237–239 (1941).
[90] A. P. Shirokov, ”Structures on differentiable manifolds,” In:Algebra. Topologiya. Geometriya. Itogi Nauki i Tekhn., All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1969), pp. 127–188.
[91] P. A. Shirokov,Selected Investigations on Geometry [in Russian], Kazan’ Univ. Press, Kazan’ (1966). · Zbl 0198.54601
[92] M. Shiha and J. Mikeš, ”Parabolically Kählerian and Sasakian spaces,” In:All-Union Colloquium of Young Scientists on Differential Geometry Dedicated to the 80th Anniversary of Birth of N. V. Efimov, Abstracts of Reports, Abrau Dyurso, Rostov-on-Don (1990), p. 112.
[93] M. Afwat and A. Švec, ”Global differential geometry of hypersurfaces,”Rozpr. ČSAV,88, No. 7, 1–75 (1978).
[94] H. Akbar-Zadeh and R. Couty, ”Espaces a tenseur de Ricci parallele admetant des transformations projectives,”Rend. Mat.,11, No. 1, 85–96 (1978). · Zbl 0393.53023
[95] E. Beltrami, ”Risoluzione del problema: riportari i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentante da linee rette,”Ann. Mat. 1, No. 7 (1865).
[96] E. Beltrami, ”Teoria fondamente degli spazii di curvatura constante,”Ann. Mat.,2, No. 2, 232–255 (1868). · JFM 01.0208.03
[97] S. Bochner, ”Curvature in a hermitian metric,”Bull. Amer. Math. Soc.,53, 179–195 (1947). · Zbl 0035.10403
[98] E. Cartan,Lecons sur la Theorie des Spaces a Connexion Projective, Paris (1931). · Zbl 0003.06801
[99] N. Coburn, ”Unitary spaces with corresponding geodesics,”Bull. Am. Math. Soc.,47, 901–910 (1941). · JFM 67.1078.01
[100] R. Couty, ”Transformations projectives sur un espace d’Einstein complect”C.R., Acad. Sci.,252, No. 8, 1096–1097 (1961). · Zbl 0096.15703
[101] R. Couty, ”Transformations projectives des varietes presque kahleriennes,”C.R., Acad. Sci.,254, No. 24, 4132–4134 (1962). · Zbl 0105.15802
[102] F. Defever and R. Deszcz, ”A note on geodesic mappings of pseudosymmetric Riemannian manifolds,”Colloq. Math.,62, 313–319 (1991). · Zbl 0810.53008
[103] R. Deszcz and M. Hotlos, ”On geodesic mappings in pseudo-symmetric manifolds,”Bull. Inst. Math. Sinica,16, No. 3, 251–262 (1968).
[104] U. Dini, ”Sobre un problema che is presenta nella theoria generale delle rappresentazioni geografiche di una superficie su di un’altra,”Ann. Mat.,3 (1869). · JFM 02.0622.02
[105] L. P. Eisenhart,Riemannian Geometry, Princeton Univ. Press (1926).
[106] A. Fialkow, ”Conformal geodesics,”Trans. Am. Math. Soc.,45, 443–473 (1939). · Zbl 0021.06501
[107] D. Florea, ”Spatti Riemann in correspondenta geodesica,”Stud. Cerc. Mat.,40, No. 6, 467–470 (1988). · Zbl 0659.53025
[108] S. Formella, ”On geodesic mappings in some riemannian and pseudo-riemannian manifolds,”Tensor,46, 311–315 (1987). · Zbl 0694.53016
[109] S. Formella, ”Generalized Einstein manifolds,” In:Proc. of the Winter School on Geom. and Phys., (Srni, 1990). Rend. Circ. Mat. Palermo, Vol. 22 (1990), pp. 49–58. · Zbl 0704.53040
[110] G. Fubini, ”Sui gruppi transformazioni geodetiche,”Mem. Acc. Torino,2, 261–313 (1903). · JFM 34.0658.03
[111] M. L. Gavrilčenko, ”Geodesic deformations of Riemannian spaces,” In:Diff. Geom. and Its Appl. Int. Conf. Brno, 1989, Singapore (1990), pp. 47–53.
[112] W. Glodek, ”A note on riemannian spaces with recurrent projective curvature,”Pr. Nauk. Inst. Mat. Fiz. Teor. Wr. Ser. Stud. Mater.,1, 9–12 (1970). · Zbl 0253.53022
[113] A. Gray and L. M. Hervella, ”The sixteen classes of almost Hermitian manifolds and their linear invariants,”Ann. Mat. Pura Appl.,123, No. 4, 35–58 (1980). · Zbl 0444.53032
[114] E. Kähler, ”Über eine bemerkenswerte Hermitische Metrik,”Abh. Math. Semin. Hamburg. Univ.,9, 173–186 (1933). · Zbl 0005.41301
[115] E. Cartan, ”Sur une classe remarquable d’espaces de Riemann,”Bull. Soc. Math. France,54, 214–264 (1926);55, 114–134 (1927). · JFM 52.0425.01
[116] G. H. Katzin and J. Levine, ”Applications of Lie derivatives to symmetries, geodesic mappings and first integrals in Riemannian spaces,”Colloq. Math.,26, 21–38 (1972). · Zbl 0256.53047
[117] V. A. Kiosak, ”Geodesic mapping of the special Riemannian spaces,” In:Colloq. on Diff. Geom., Eger (Hungaria) (1989).
[118] S. Kobayashi,Transformation Groups in Differential Geometry, Springer-Verlag, Berlin (1972). · Zbl 0246.53031
[119] S. Kobayashi, and K. Nomizu,Foundation of Differential Geometry, Vol. 1, Interscience. Publ., New York-London (1963); Vol. 2 Interscience. Publ., New York-London-Sydney (1969). · Zbl 0119.37502
[120] Koga Mitsuru, ”On projective diffeomorphismus not necessarily preserving complex structure,”Math. J. Okayama Univ.,19, No. 2, 183–191 (1977). · Zbl 0375.53025
[121] T. Levi-Civita, ”Sulle transformationi delle equazioni dinamiche,”Ann. Mat. Milano,24, Ser. 2, 255–300 (1886). · JFM 27.0603.04
[122] A. Lichnerowicz, ”Courbure, nombres de Betti et espaces symmetriques,” In:Proc. Int. Congr. Math. (Cambridge, 1950), Vol. 2, Amer. Math. Soc. (1952), pp. 216–223.
[123] J. Mikeš, ”O geodetických transformacích polosymmetrických riemannových variet,” In:Zb. Anotacií, Košice (Czechslov.) (1977).
[124] J. Mikeš, ”Geodesic mappings of special Riemannian spaces,” In:Colloq. Math. Soc. J. Bolyai. 46.Top. in Diff. Geom., Debrecen, 1984, Vol. 2, Amsterdam (1988), pp. 793–813.
[125] J. Mikeš, ”On the order of a special transformation of Riemannian spaces,” In:Proc. Conf. Diff. Geom. and Appl., Dubrovnik, 1988, Novi Sad (Yugosl.) (1989), pp. 199–208.
[126] J. Mikeš, ”On the existence of nontrivial global geodesic mappings ofn-dimensional compact surfaces of revolution,” In:Diff. Geom. and Its Appl., Proc. Conf., Brno (Czechosl.), 1989, World Scientific, Singapore (1990), pp. 129–137.
[127] J. Mikeš and V. Berezovski, ”Geodesic mappings of affine-connected spaces onto Riemannian spaces,” In:Colloq. Math. Soc. J. Bolyai, 56.Diff. Geom. Eger (Hungary) (1989), pp. 491–494. · Zbl 0792.53012
[128] R. F. Reynolds and A. H. Thompson, ”Projective-symmetric spaces,”J. Austral. Math. Soc.,7, No. 1, 48–54 (1967). · Zbl 0143.44901
[129] W. Roter, ”A note infinitesimal projective transformations in recurrent spaces of second order,”Zesz. Nauk. Politechn. Wroclawsk.,197, 87–94 (1968).
[130] C. Simonescu, ”Varietati Riemann in corepondenta geodezica definite pe un suport compact,” In:Lucr. Sti. Inst. Politech. Brasov. Fac. Mec., Vol. 5 (1961), pp. 15–19.
[131] H. Takeno and M. Ikeda, ”Theory of spherically symmetric space-times. VII. Space-times with corresponding geodesics,”J. Sci. Hiroshima Univ.,A17, No. 1, 75–81 (1953). · Zbl 0052.17803
[132] T. Y. Thomas, ”On projective and equiprojective geometries of paths,”Proc. Nat. Acad. Sci. USA,11, 198–203 (1925). · JFM 51.0569.03
[133] P. Venzi, ”On geodesic mappings on Riemannian and pseudoriemannian manifolds,”Tensor,32, No. 2, 192–198 (1978). · Zbl 0377.53012
[134] P. Venzi, ”Geodätische abbildungen in Riemanscher mannigfaltigkeiten,”Tensor,33, 313–321 (1979 · Zbl 0419.53010
[135] P. Venzi, ”On concircular mappings in Riemannian and pseudo-Riemannian manifolds with symmetry conditions,”Tensor,33, 109–113 (1979). · Zbl 0386.53011
[136] P. Venzi, ”On geodesic mappings in Riemannian and pseudo-Riemannian manifolds,”Tensor,33, 23–28 (1979). · Zbl 0426.53017
[137] P. Venzi, ”Geodätische Abbildungen mit {\(\lambda\)} ij ={\(\Delta\)}g ij ,”Tensor,34, No. 2, 230–234 (1979).
[138] P. Venzi, ”Onq-projectively recurrent spaces,”Rend. Circ. Math. Palermo,30, No. 3, 421–434 (1981). · Zbl 0508.53024
[139] P. Venzi, ”Über konforme und geodätische Abbildungengen,”Result. Math.,5, No. 2, 184–198 (1982). · Zbl 0508.53022
[140] P. Venzi, ”The metricds 2=F(u)du 2+G(u)d{\(\sigma\)} 2 and an application to concircular mappings,”Util. Math.,22, 221–233 (1982). · Zbl 0547.53010
[141] P. Venzi, ”Klassifikation der geodätischen Abbildungen mit \(\overline {Ric} - Ric = \Delta g\) ,”Tensor,37, 137–147 (1982). · Zbl 0491.53009
[142] P. Venzi, ”The geodesic mappings in Riemannian and pseudo-Riemannian manifolds, Stochastic processes in classical and quantum system,”Lect. Notes, Phys.,262, 512–516 (1986). · Zbl 0604.53007
[143] G. Vranceanu, ”Proprietati globale ale spatiilor bui Riemann cu conexiune abina constanta,”Stud. Cerc. Mat. Acad. RPR,14, No. 1, 7–22 (1963).
[144] H. L. Vries, ”Über Riemannsche Raume die infinitesimale konforme Transformationen gestätten,”Math. Z.,60, No. 3, 328–347 (1954). · Zbl 0056.15203
[145] W. J. Westlake, ”Hermitian spaces in geodesic correspondence,”Proc. Am. Math. Soc.,5, No. 2, 301–303 (1954). · Zbl 0055.40304
[146] H. Weyl,Zur Infinitesimalgeometrie Einordnung der Projectiven und der Konformen Auffassung Göttinger Nachtr. (1921). · JFM 48.0844.04
[147] K. Yano,Concircular Geometry, I–IV. (Proc. Imp. Acad. Tokyo) Vol. 16 (1940).
[148] K. Yano,Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, Oxford (1965). · Zbl 0127.12405
[149] K. Yano, ”Sur la correspondence projective entre deux espaces pseudohermitens,”C. R., Acad. Sci.,239, 1346–1348 (1956). · Zbl 0056.41201
[150] K. Yano and S. Bochner,Curvature and Betti Numbers, Princeton, New Jersey (1953).
[151] K. Yano and T. Nagano, ”Some theorems on projective and conformal transformations,”Koninkl. Nederl. Akad. Wet.,A60, No. 4, 451–458 (1957). · Zbl 0079.15603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.