×

zbMATH — the first resource for mathematics

Families of arcs on rational surface singularities. (English) Zbl 0867.14012
The problem treated in this paper was posed by J. Nash, who proposed to study the space \({\mathcal H}\) of arcs in a germ of a singular variety \((V,P)\); he showed that the arc families in \({\mathcal H}\) correspond to irreducible components of the exceptional locus of any given desingularization of \((V,P)\) and raised the question whether every component which (modulo birational equivalence) appears in every desingularization (such components are called essential) is associated to some family in \({\mathcal H}\).
The paper gives an affirmative answer in the case when \(V\) is a surface and the singularity is rational. In this case the essential components \(\{E_\alpha\}_{\alpha\in \Delta}\) are represented by the irreducible components of a minimal desingularization \(S\to V\). – The idea is to define, for each \(E_\alpha\), a \(\mathbb{Q}\)-Cartier divisor \(D_\alpha\) in \(S\) (\(D_\alpha\) is the exceptional part of the total transform of the projection of any germ of curve in \(S\) which is transversal to \(E_\alpha\) and does not meet any \(E_\gamma\), \(\gamma\neq \alpha\)); then a closed subset \({\mathcal H}_\alpha\) of \({\mathcal H}\) is defined by imposing valuative conditions determined by \(D_\alpha\), and those \({\mathcal H}_\alpha\) give the answer to the Nash problem.

MSC:
14J17 Singularities of surfaces or higher-dimensional varieties
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966) 129–136 · Zbl 0142.18602
[2] M. Artin, Algebraic approximation of structures over complete local rings. Publ. Math. I.H.E.S. 36 (1969) 23–58 · Zbl 0181.48802
[3] E. Brieskorn, Rationale Singularitäten Komplexer Flächen, Inv. Math. 4 (1968) 336–358 · Zbl 0219.14003
[4] H. Laufer, On rational singularities, Amer. J. Math. 94 (1972) 597–608 · Zbl 0251.32002
[5] G. Gonzalez-Sprinberg and M. Lejeune-Jalabert, Courbes lisses, cycle maximal et points infiniment voisins des singularités de surface, Prépublication de l’Institut Fourier 196 (1992)
[6] G. Gonzalez-Sprinberg and M. Lejeune-Jalabert, Sur l’espace des courbes tracées sur une singularité, Proceedings La Rábida, Progress in Mathematics, Birkhäusen-Basel (to appear) · Zbl 0862.14003
[7] M. Hickel, Fonction de Artin et germes de courbes tracées sur un germe d’espace analytique, Amer. J. Math. (1993) 1299–1334 · Zbl 0804.32006
[8] J. Kollár, Toward moduli of singular varieties, Thesis, Brandeis University (1983)
[9] M. Lejeune-Jalabert, Arcs analytiques et résolution minimale des singularités des surfaces quasi-homogènes. in: M. Demazure, H. Pinkham and B. Teissier, eds., Séminaire sur les singularités des surfaces, Lecture Notes in Mathematics 777 (Springer, Berlin, 1976-1977) 301–336
[10] M. Lejeune-Jalabert, Courbes tracées sur un germe d’hypersurface, Amer. J. Math. 112 (1990) 525–568 · Zbl 0743.14002
[11] J. Lipman, Rational singularities with applications to algebraic surfaces and unique factorization, Publ. Math. I.II.E.S. 36 (1969) 195–279 · Zbl 0181.48903
[12] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. I.H.E.S. 11 (1961) 229–246 · Zbl 0108.16801
[13] J. Nash, Arc structure of singularities, Preprint not published · Zbl 0880.14010
[14] A. Nobile, On Nash theory of arc structure of singularities, Preprint (1988) · Zbl 0763.14005
[15] A.J. Reguera, Courbes et proximité sur les singularités rationnelles de surface, C.R. Acad. Sci. Paris Sér. I Math. 319 (1994) 383–386
[16] M. Spivakovsky, Sandwiched singularities and desingularization of surfaces by normalized Nas transformations, Amer. J. Math. 131 (1990) 411–491 · Zbl 0719.14005
[17] J.C. Tougeron, Familles {\(\Omega\)} noetheriennes de modules surk[[x]] et applications, Preprint
[18] J.J. Warwick, A theorem on solutions of analytic equations with applications to deformation of complex structures, Math. Ann. 216 (1975) 127–142 · Zbl 0303.32018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.