×

Approximation of invariant surfaces by periodic orbits in high-dimensional maps: Some rigorous results. (English) Zbl 0867.58056

Summary: The existence of an invariant surface in high-dimensional systems greatly influences the behavior in a neighborhood of the invariant surface. We prove theorems that predict the behavior of periodic orbits in the vicinity of an invariant surface on which the motion is conjugate to a Diophantine rotation for symplectic maps and quasiperiodic perturbations of symplectic maps. Our results allow for efficient numerical algorithms that can serve as an indication for the breakdown of invariant surfaces.

MSC:

37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
65Y20 Complexity and performance of numerical algorithms
PDF BibTeX XML Cite
Full Text: DOI EuDML EMIS Link

References:

[1] DOI: 10.1209/0295-5075/15/4/003
[2] DOI: 10.1007/978-1-4612-1037-5
[3] DOI: 10.1007/BF01388907 · Zbl 0642.58040
[4] DOI: 10.1007/BF00945008 · Zbl 0685.70014
[5] DOI: 10.1007/BF01049722 · Zbl 0892.58045
[6] DOI: 10.1063/1.524170
[7] Kosygin D. V., Dynamical Systems and Statistical Mechanics pp 99– (1991)
[8] de la Llave R., Physica 71 pp 55– (1994)
[9] de la Llave R., ”Whiskered and low dimensional tori in nearly integrable Hamiltonian systems” · Zbl 1136.37349
[10] DOI: 10.1090/S0894-0347-1991-1080112-5
[11] MacKay R. S., Ph.D. thesis, in: ”Renormalization in area preserving maps” (1982) · Zbl 1194.37068
[12] DOI: 10.1088/0951-7715/5/1/007 · Zbl 0749.58036
[13] MacKay R. S., Phys. Lett. 190 pp 417– (1994) · Zbl 0961.37502
[14] Poincaré H., Méthodes nouvelles de la mécanique celeste 3 (1993)
[15] Perry A. D., Physica 71 pp 102– (1994)
[16] DOI: 10.1007/3-540-07171-7_19
[17] DOI: 10.1002/cpa.3160290615 · Zbl 0336.35020
[18] DOI: 10.1007/978-3-642-87284-6
[19] Tompaidis S., Experimental Mathematics 5 pp 211– (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.