zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Locally parametric nonparametric density estimation. (English) Zbl 0867.62030
Summary: This paper develops a nonparametric density estimator with parametric overtones. Suppose $f(x,\theta)$ is some family of densities, indexed by a vector of parameters $\theta$. We define a local kernel-smoothed likelihood function which, for each $x$, can be used to estimate the best local parametric approximant to the true density. This leads to a new density estimator of the form $f(x,\widehat{\theta}(x))$, thus inserting the best local parameter estimate for each new value of $x$. When the bandwidth used is large, this amounts to ordinary full likelihood parametric density estimation, while for moderate and small bandwidths the method is essentially nonparametric, using only local properties of data and the model. Alternative ways more general than via the local likelihood are also described. The methods can be seen as ways of nonparametrically smoothing the parameter within a parametric class. Properties of this new semiparametric estimator are investigated. Our preferred version has approximately the same variance as the ordinary kernel method but potentially a smaller bias. The new method is seen to perform better than the traditional kernel method in a broad nonparametric vicinity of the parametric model employed, while at the same time being capable of not losing much in precision to full likelihood methods when the model is correct. Other versions of the method are approximately equivalent to using particular higher order kernels in a semiparametric framework. The methodology we develop can be seen as the density estimation parallel to local likelihood and local weighted least squares theory in nonparametric regression.

62G07Density estimation
62F12Asymptotic properties of parametric estimators
62G20Nonparametric asymptotic efficiency
Full Text: DOI
[1] Buckland, S. T. (1992). Maximum likelihood fitting of Hermite and simple poly nomial densities. J. Roy. Statist. Soc. Ser. C 41 241-266. JSTOR: · doi:10.2307/2347618 · http://links.jstor.org/sici?sici=0035-9254%281992%2941%3A1%3C63%3AFDFWP%3E2.0.CO%3B2-C&origin=euclid
[2] Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Assoc. 74 829-836. · Zbl 0423.62029 · doi:10.2307/2286407
[3] Copas, J. B. (1995). Local likelihood based on kernel censoring. J. Roy. Statist. Soc. Ser. B 57 221-235. JSTOR: · Zbl 0812.62025 · http://links.jstor.org/sici?sici=0035-9246%281995%2957%3A1%3C221%3ALLBOKC%3E2.0.CO%3B2-R&origin=euclid
[4] Efron, B. and Tibshirani, R. (1996). Using specially designed exponential families for density estimation. J. Amer. Statist. Assoc. · Zbl 0878.62028 · doi:10.1214/aos/1032181161
[5] Fan, J. (1992). Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87 998-1004. JSTOR: · Zbl 0850.62354 · doi:10.2307/2290637 · http://links.jstor.org/sici?sici=0162-1459%28199212%2987%3A420%3C998%3ADNR%3E2.0.CO%3B2-0&origin=euclid
[6] Fan, J. (1993). Local linear regression smoothers and their minimax efficiencies. Ann. Statist. 21 196-216. · Zbl 0773.62029 · doi:10.1214/aos/1176349022
[7] Fan, J. and Gijbels, I. (1992). Variable bandwidth and local linear regression smoothers. Ann. Statist. 20 2008-2036. · Zbl 0765.62040 · doi:10.1214/aos/1176348900
[8] Fan, J. and Gijbels, I. (1996). Local Poly nomial Modelling and its Applications. Chapman and Hall, London. · Zbl 0873.62037
[9] Fan, J., Heckman, N. E. and Wand, M. P. (1995). Local poly nomial kernel regression for generalized linear models and quasi-likelihood functions. J. Amer. Statist. Assoc. 90 141-150. JSTOR: · Zbl 0818.62036 · doi:10.2307/2291137 · http://links.jstor.org/sici?sici=0162-1459%28199503%2990%3A429%3C141%3ALPKRFG%3E2.0.CO%3B2-9&origin=euclid
[10] Fenstad, G. U. and Hjort, N. L. (1996). Two Hermite expansion density estimators, and a comparison with the kernel method. Unpublished manuscript.
[11] Hastie, T. and Loader, C. R. (1993). Local regression: Automatic kernel carpentry (with discussion). Statist. Sci. 8 120-143.
[12] Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall, London. · Zbl 0747.62061
[13] Hjort, N. L. (1986). Theory of Statistical Sy mbol Recognition. Norwegian Computing Centre, Oslo.
[14] Hjort, N. L. (1991). Semiparametric estimation of parametric hazard rates. In Survival Analy sis: State of the Art (P. S. Goel and J. P. Klein, eds.) 211-236. Kluwer, Dordrecht. · Zbl 0761.62155
[15] Hjort, N. L. (1994). Minimum L2 and robust Kullback-Leibler estimation. In Proceedings of the 12th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (P. Lachout and J. Á. Ví sek, eds.) 102-105. Academy of Sciences of the Czech Republic, Prague.
[16] Hjort, N. L. (1995). Bayesian approaches to semiparametric density estimation (with discussion). In Bayesian Statistics V (J. Bernardo, J. Berger, P. Dawid and A. F. M. Smith, eds.) 223-253. Oxford Univ. Press. Hjort, N. L. (1996a). Performance of Efron and Tibshirani’s semiparametric density estimator. Statistical research report, Dept. Mathematics, Univ. Oslo. Hjort, N. L. (1996b). Multiplicative higher order bias kernel density estimators. Statistical research report, Dept. Mathematics, Univ. Oslo.
[17] Hjort, N. L. (1997). Dy namic likelihood hazard rate estimation. Biometrika 84.
[18] Hjort, N. L. and Glad, I. K. (1995). Nonparametric density estimation with a parametric start. Ann. Statist. 23 882-904. · Zbl 0838.62027 · doi:10.1214/aos/1176324627
[19] Hjort, N. L. and Pollard, D. B. (1996). Asy mptotics for minimizers of convex processes. Unpublished manuscript. Jones, M. C. (1993a). Kernel density estimation when the bandwidth is large. Austral. J. Statist. 35 319-326. Jones, M. C. (1993b). Simple boundary correction for kernel density estimation. Statistics and Computing 3 135-146.
[20] Jones, M. C. (1994). On kernel density derivative estimation. Comm. Statist. Theory Methods 23 2133-2139. · Zbl 0825.62208 · doi:10.1080/03610929408831377
[21] Jones, M. C. (1995). On close relations of local likelihood density estimation. Unpublished manuscript. · Zbl 0882.62034 · doi:10.1007/BF02562622
[22] Jones, M. C., Davies, S. J. and Park, B. U. (1994). Versions of kernel-ty pe regression estimators. J. Amer. Statist. Assoc. 89 825-832. JSTOR: · Zbl 0804.62043 · doi:10.2307/2290908 · http://links.jstor.org/sici?sici=0162-1459%28199409%2989%3A427%3C825%3AVOKRE%3E2.0.CO%3B2-V&origin=euclid
[23] Jones, M. C. and Foster, P. J. (1993). Generalized jackknifing and higher order kernels. J. Nonparametr. Statist. 3 81-94. · Zbl 05143402 · doi:10.1080/10485259308832573
[24] Jones, M. C. and Hjort, N. L. (1994). Local fitting of regression models by likelihood: what’s important? Statistical research report, Dept. Mathematics, Univ. Oslo.
[25] Jones, M. C., Linton, O. and Nielsen, J. P. (1995). A simple and effective bias reduction method for density and regression estimation. Biometrika 82 327-338. JSTOR: · Zbl 0823.62033 · doi:10.1093/biomet/82.2.327 · http://links.jstor.org/sici?sici=0006-3444%28199506%2982%3A2%3C327%3AASBRMF%3E2.0.CO%3B2-M&origin=euclid
[26] Jones, M. C., Marron, J. S. and Sheather, S. J. (1996). A brief survey of bandwidth selection for density estimation. J. Amer. Statist. Assoc. 91 401-407. JSTOR: · Zbl 0873.62040 · doi:10.2307/2291420 · http://links.jstor.org/sici?sici=0162-1459%28199603%2991%3A433%3C401%3AABSOBS%3E2.0.CO%3B2-2&origin=euclid
[27] Lindsey, J. K. (1974). Comparison of probability distributions. J. Roy. Statist. Soc. Ser. B 36 38-47. JSTOR: · Zbl 0282.62064 · http://links.jstor.org/sici?sici=0035-9246%281974%2936%3A1%3C38%3ACOPD%3E2.0.CO%3B2-9&origin=euclid
[28] Loader, C. R. (1996). Local likelihood density estimation. Ann. Statist. 24 1602-1618. · Zbl 0867.62034 · doi:10.1214/aos/1032298287
[29] Marron, J. S. and Wand, M. P. (1992). Exact mean integrated squared error. Ann. Statist. 20 712-736. · Zbl 0746.62040 · doi:10.1214/aos/1176348653
[30] Olkin, I. and Spiegelman, C. H. (1987). A semiparametric approach to density estimation. J. Amer. Statist. Assoc. 82 858-865. JSTOR: · Zbl 0632.62027 · doi:10.2307/2288797 · http://links.jstor.org/sici?sici=0162-1459%28198709%2982%3A399%3C858%3AASATDE%3E2.0.CO%3B2-1&origin=euclid
[31] Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression. Ann. Statist. 22 1346-1370. · Zbl 0821.62020 · doi:10.1214/aos/1176325632
[32] Schuster, E. and Yakowitz, S. (1985). Parametric/nonparametric mixture density estimation with application to flood-frequency analysis. Water Resources Bulletin 21 797-804.
[33] Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, New York. · Zbl 0850.62006
[34] Shao, J. (1991). Second-order differentiability and jackknife. Statist. Sinica 1 185-202. · Zbl 0820.62044
[35] Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Statist. Assoc. B 53 683-690. JSTOR: · Zbl 0800.62219 · http://links.jstor.org/sici?sici=0035-9246%281991%2953%3A3%3C683%3AARDBSM%3E2.0.CO%3B2-9&origin=euclid
[36] Staniswalis, J. (1989). The kernel estimate of a regression function in likelihood-based models. J. Amer. Statist. Assoc. 84 276-283. JSTOR: · Zbl 0721.62039 · doi:10.2307/2289874 · http://links.jstor.org/sici?sici=0162-1459%28198903%2984%3A405%3C276%3ATKEOAR%3E2.0.CO%3B2-N&origin=euclid
[37] Stone, C. J. (1977). Consistent nonparametric regression. Ann. Statist. 5 595-620. · Zbl 0366.62051 · doi:10.1214/aos/1176343886
[38] Tibshirani, R. and Hastie, T. (1987). Local likelihood estimation. J. Amer. Statist. Assoc. 82 559-567. JSTOR: · Zbl 0626.62041 · doi:10.2307/2289465 · http://links.jstor.org/sici?sici=0162-1459%28198706%2982%3A398%3C559%3ALLE%3E2.0.CO%3B2-E&origin=euclid
[39] Wand, M. P. and Jones, M. C. (1993). Comparison of smoothing parameterizations in bivariate kernel density estimation. J. Amer. Statist. Assoc. 88 520-528. JSTOR: · Zbl 0775.62105 · doi:10.2307/2290332 · http://links.jstor.org/sici?sici=0162-1459%28199306%2988%3A422%3C520%3ACOSPIB%3E2.0.CO%3B2-X&origin=euclid
[40] Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall, London. · Zbl 0854.62043