Asymptotic equivalence of density estimation and Gaussian white noise. (English) Zbl 0867.62035

Summary: Signal recovery in Gaussian white noise with variance tending to zero has served for some time as a representative model for nonparametric curve estimation, having all the essential traits in a pure form. The equivalence has mostly been stated informally, but an approximation in the sense of Le Cam’s deficiency distance \(\Delta\) would make it precise. The models are then asymptotically equivalent for all purposes of statistical decision with bounded loss.
In nonparametrics, a first result of this kind has recently been established for Gaussian regression. We consider the analogous problem for the experiment given by \(n\) i.i.d. observations having density \(f\) on the unit interval. Our basic result concerns the parameter space of densities which are in a Hölder ball with exponent \(\alpha>1/2\) and which are uniformly bounded away from zero. We show that an i.i.d. sample of size \(n\) with density \(f\) is globally asymptotically equivalent to a white noise experiment with drift \(j^{1/2}\) and variance \((4n)^{-1}\). This represents a nonparametric analog of Le Cam’s heteroscedastic Gaussian approximation [L. Le Cam, Ann. Inst. H. Poincaré 21, 225-287 (1985; Zbl 0584.62024)] in the finite-dimensional case. The proof utilizes empirical process techniques related to the Hungarian construction. White noise models on \(f\) and \(\log f\) are also considered, allowing for various “automatic” asymptotic risk bounds in the i.i.d. model from white noise.


62G07 Density estimation
62B15 Theory of statistical experiments
62M99 Inference from stochastic processes
62G20 Asymptotic properties of nonparametric inference


Zbl 0584.62024
Full Text: DOI


[1] Belitser, E. and Levit, B. (1995). On minimax filtering over ellipsoids. Math. Methods Statist. 4 259-273. · Zbl 0836.62070
[2] Brown, L. D. and Low, M. (1996). Asy mptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398. · Zbl 0867.62022
[3] Donoho, D. (1994). Asy mptotic minimax risk (for sup-norm loss): solution via optimal recovery. Probab. Theory Related Fields 99 145-170. · Zbl 0802.62007
[4] Donoho, D. L. and Johnstone, I. (1992). Minimax estimation via wavelet shrinkage. Unpublished manuscript. · Zbl 0935.62041
[5] Donoho, D. L. and Low, M. (1992). Renormalization exponents and optimal pointwise rates of convergence. Ann. Statist. 20 944-970. · Zbl 0797.62032
[6] Dudley, R. (1989). Real Analy sis and Probability. Wadsworth & Brooks/Cole, Pacific Grove, CA. · Zbl 0686.60001
[7] Efroimovich, S. Yu. and Pinsker, M. S. (1982). Estimating a square integrable probability density of a random variable. Problems Inform. Transmission 18 172-189. · Zbl 0533.62038
[8] Falk, M. and Reiss, R.-D. (1992). Poisson approximation of empirical processes. Statist. Probab. Lett. 14 39-48. · Zbl 0754.60048
[9] Golubev, G. K. (1984). On minimax estimation of regression. Problems Inform. Transmission 20 56-64. (In Russian.) · Zbl 0538.62005
[10] Golubev, G. K. (1991). LAN in problems of nonparametric estimation of functions and lower bounds for quadratic risks. Theory Probab. Appl. 36 152-157. · Zbl 0738.62043
[11] Ibragimov, I. A. and Khasminski, R. Z. (1977). On the estimation of an infinite dimensional parameter in Gaussian white noise. Soviet Math. Dokl. 236 1053-1055. · Zbl 0389.62023
[12] Koltchinskii, V. (1994). Komlos-Major-Tusnady approximation for the general empirical process and Haar expansions of classes of functions. J. Theoret. Probab. 7 73-118. · Zbl 0810.60002
[13] Korostelev, A. P. (1993). An asy mptotically minimax regression estimate in the uniform norm up to an exact constant. Theory Probab. Appl. 38 737-743. · Zbl 0819.62034
[14] Korostelev, A. P. and Nussbaum, M. (1996). The asy mptotic minimax constant for sup-norm loss in nonparametric density estimation. Discussion paper, SFB 373, Humboldt Univ., Berlin.
[15] Le Cam, L. (1985). Sur l’approximation de familles de mesures par des familles gaussiennes. Ann. Inst. H. Poincaré 21 225-287. · Zbl 0584.62024
[16] Le Cam, L. (1986). Asy mptotic Methods in Statistical Decision Theory. Springer, New York. · Zbl 0605.62002
[17] Le Cam, L. and Yang, G. (1990). Asy mptotics in Statistics. Springer, New York.
[18] Low, M. (1992). Renormalization and white noise approximation for nonparametric functional estimation problems. Ann. Statist. 20 545-554. · Zbl 0756.62018
[19] Mammen, E. (1986). The statistical information contained in additional observations. Ann. Statist. 14 665-678. · Zbl 0633.62006
[20] Millar, P. W. (1979). Asy mptotic minimax theorems for the sample distribution function. Z. Wahrsch. Verw. Gebiete 48 233-252. · Zbl 0387.62029
[21] Nikolskij, S. M. (1975). Approximation of Functions of Several Variables and Imbedding Theorems. Springer, Berlin.
[22] Nussbaum, M. (1985). Spline smoothing in regression models and asy mptotic efficiency in L2. Ann. Statist. 13 984-997. · Zbl 0596.62052
[23] Parthasarathy, K. R. (1978). Introduction to Probability and Measure. Springer, New York. · Zbl 0376.60052
[24] Pinsker, M. S. (1980). Optimal filtering of square integrable signals in Gaussian white noise. Problems Inform. Transmission 16 120-133. · Zbl 0452.94003
[25] Reiss, R.-D. (1993). A Course on Point Processes. Springer, New York. · Zbl 0771.60037
[26] Rio, E. (1994). Local invariance principles and their application to density estimation. Probab. Theory Related Fields 98 21-45. · Zbl 0794.60019
[27] Shorack, G. and Wellner, J. (1986). Empirical Processes with Applications to Statistics. Wiley, New York. · Zbl 1170.62365
[28] Strasser, H. (1985). Mathematical Theory of Statistics. de Gruy ter, Berlin. · Zbl 0594.62017
[29] Tsy bakov, A. B. (1994). Efficient nonparametric estimation in L2 with general loss. Unpublished manuscript.
[30] Woodroofe, M. (1967). On the maximum deviation of the sample density. Ann. Math. Statist. 38 475-481. · Zbl 0157.48002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.