×

The \(2d+4\) simple quadratic natural exponential families on \(\mathbb{R}^ d\). (English) Zbl 0867.62042

Summary: The present paper describes all the natural exponential families on \(\mathbb{R}^d\) whose variance function is of the form \(V(m)= am\otimes m+B(m)+C\), with \(m\otimes m(\theta)= \langle \theta,m\rangle m\) and \(B\) linear in \(m\). There are \(2d+4\) types of such families, which are built from particular mixtures of families of normal, Poisson, gamma, hyperbolic on \(\mathbb{R}\) and (negative-) multinomial distributions. The proof of this result relies mainly on techniques used in the elementary theory of Lie algebras.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas
62E10 Characterization and structure theory of statistical distributions
60E10 Characteristic functions; other transforms
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] CASALIS, M. 1991. Les familles exponentielles a variance quadratique homogene sont des lois de Wishart sur un cone sy metrique. C. R. Acad. Sci. Paris Ser. I Math. 312 537 540. \' Ź. · Zbl 0745.62051
[2] CASALIS, M. 1992a. Un estimateur de la variance pour une famille exponentielle naturelle a fonction-variance quadratique. C. R. Acad. Sci. Paris Ser. I Math. 314 143 146. Ź. 2 Z. · Zbl 0743.62041
[3] CASALIS, M. 1992b. Les familles exponentielles sur de fonction-variance V m am m Z. B m C. C. R. Acad. Sci. Paris Ser. I Math. 314 635 638. Ź. · Zbl 0742.62009
[4] CONSONNI, G. and VERONESE, P. 1992. Conjugate priors for exponential families having quadratic variance functions. J. Amer. Statist. Assoc. 87 1123 1127. Z. JSTOR: · Zbl 0764.62027
[5] DIACONIS, P. and YLVISAKER, D. 1979. Conjugate priors for exponential families. Ann. Statist. 7 269 281. Z. Z. · Zbl 0405.62011
[6] Dy NKIN, E. 1950. The structure of semi-simple Lie algebras. Uspehi Mat. Nauk N.S. 2 Z. 59 127. Am. Math. Soc. Transl. 17 1950. Z.
[7] FEINSILVER, P. 1986. Some classes of orthogonal poly nomials associated with martingales. Proc. Amer. Math. Soc. 98 298 302. Z. JSTOR: · Zbl 0615.60050
[8] FEINSILVER, P. 1991. Orthogonal poly nomials and coherent states. Sy mmetries in Science 5 159 172. Plenum, New York. Z. GUTIERREZ-PENA, E. and SMITH, A. F. M. 1995. Conjugate parametrizations for natural expo nential families. J. Amer. Statist. Assoc. 90 1347 1356.
[9] KOKONENDJI, C. 1993. Familles exponentielles naturelles reelles de fonction-variance en R \' ’ Q. Doctorat de l’Univ. Paul Sabatier, Toulouse. Z.
[10] KOKONENDJI, C. and SESHADRI, V. 1996. On the determinant of the second derivative of the Laplace transform. Ann. Statist. 24 1813 1827. Z. d · Zbl 0868.62047
[11] LETAC, G. 1989. Le probleme de la classification des familles exponentielles naturelles de ay ant une fonction-variance quadratique. Probability Measures on Groups IX. Lecture Notes in Math. 1306 194 215. Springer, Berlin. Z. · Zbl 0679.62010
[12] LETAC, G. 1992. Lectures on natural exponential families and their variance-functions. Monograf. Mat. 5. Z. · Zbl 0983.62501
[13] LETAC, G. and MORA, M. 1990. Natural real exponential families with cubic variance-functions. Ann. Statist. 18 1 37. Z. · Zbl 0714.62010
[14] MEIXNER, J. 1934. Orthogonal Poly nomsy steme mit einer besonderen Gestalt der erzengenden Function. J. London Math. Soc. 9 6 13. Z.
[15] MORA, M. 1986. Familles exponentielles et fonctions-variance. These de 3eme cy cle de l’Univ. Paul Sabatier, Toulouse. Z.
[16] MORRIS, C. N. 1982. Natural exponential families with quadratic variance-function. Ann. Statist. 10 65 80. Z. · Zbl 0498.62015
[17] POMMERET, D. 1995. Poly nomes orthogonaux asocies aux familles exponentielles naturelles. \' These de l’Univ. Paul Sabatier, Toulouse. Z.
[18] RATNAPARKHI, M. V. 1985. Multinomial distributions. In Ency clopedia of Statistical Sciences 5 659 665. Wiley, New York. Z.
[19] SHANBHAG, D. N. 1979. Diagonality of the Bhattachary ya matrix as a characterization. Theory Probab. Appl. 24 430 433. · Zbl 0448.60014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.