Komatsu, Takao; van der Poorten, Alfred J. Substitution invariant Beatty sequences. (English) Zbl 0868.11015 Jap. J. Math., New Ser. 22, No. 2, 349-354 (1996). What sequences \((f_\theta)\) defined by \(f_\theta(k)= \lfloor(k+1)\theta\rfloor- \lfloor k\theta\rfloor\), where \(\theta\) is an irrational number, are fixed points of substitutions (morphisms of the free monoid)? This problem has been solved by D. Crisp, W. Moran, A. Pollington and P. Shiue [J. Théor. Nombres Bordx. 5, 123-137 (1993; Zbl 0786.11041)] and a shorter proof was given by J. Berstel and P. Séébold [reference given in the paper under review but also in Bull. Belg. Math. Soc.-Simon Stevin 1, 175-189 (1994; Zbl 0803.68095)]. The authors give here a different, simpler and more efficient argument. Their main result reads as follows: Let \(\theta=[a_0, a_1,a_2,\dots]\), define \(T_0=0\), \(T_1= 0^{a_1-1}1\), \(T_n=T^{a_n}_{n-1} T_{n-2}\) for \(n\geq 2\) (hence \(f_\theta=\lim T_n)\), and let \(W\) be a substitution. Then, (i) \(W(f_\theta)= f_\theta\iff \exists\;m\geq 0\) \(W(T_i)= T_{i+m}\) \(\forall\;i=1,2,\dots\) and (ii) such a \(W\) exists if and only if \(a_{i+m}= a_i\) for \(i=3,4,\dots\) and either \(a_{2+m}= a_2\), or \(a_2=1\). Note that Lemma 2 goes back to R. C. Lyndon and M. P. Schützenberger [Mich. Math. J. 9, 289-298 (1962; Zbl 0106.02204)]. Reviewer: J.-P.Allouche (Orsay) Cited in 3 ReviewsCited in 10 Documents MSC: 11B85 Automata sequences 68R15 Combinatorics on words Keywords:Sturmian sequences; characteristic sequences; Beatty sequences; continued fractions; fixed points of substitutions Citations:Zbl 0786.11041; Zbl 0803.68095; Zbl 0106.02204 PDF BibTeX XML Cite \textit{T. Komatsu} and \textit{A. J. van der Poorten}, Jpn. J. Math., New Ser. 22, No. 2, 349--354 (1996; Zbl 0868.11015) OpenURL