De Jeu, Rob Zagier’s conjecture and wedge complexes in algebraic \(K\)-theory. (English) Zbl 0868.19002 Compos. Math. 96, No. 2, 197-247 (1995). In “Polylogarithms, Dedekind zetafunctions, and the algebraic \(K\)-theory of fields” [in: Arithmetic algebraic geometry, Prog. Math. 89, 391-430 (1991; Zbl 0728.11062)], D. Zagier formulated a conjecture about the higher odd \(K\)-theory groups \(K_{2n-1}(F)\) of a number field \(F\) based on Bloch’s earlier work in the case \(n=2\). Beilinson and Deligne reformulated the conjecture as follows:Let \({\mathcal L}=F^*\otimes \mathbb{Q}\) and let \(\{x\}_1= 1-x\) for \(x\in F\setminus \{0,1\}\). There should exist abelian groups \({\mathcal L}_n\) for \(n\geq 1\) generated by symbols \(\{x\}_n\), \(x\in F\setminus \{0,1\}\) together with a map \(d_n:{\mathcal L}\to\bigwedge^2 (\bigoplus^{n-1}_{l=1}{\mathcal L}_l)\) given by \(\{x\}_n\mapsto x\wedge\{ x\}_{n-1}\). There should exist an isomorphism \(\varphi_n:\ker d_n\to K^{(n)}_{2n-1}(F)\) and the composite of \(\varphi_n\) and the Borel regulator map should be given explicitly in terms of the \(n\)-th polylogarithm. Using a formalism of multi-relative \(K\)-theory the author constructs for each \(n\geq 1\) complexes \(\widetilde{\mathcal M}_{(n)}\) of \(\mathbb{Q}\)-vector spaces, whose \(p\)-th cohomology \(H^p(\widetilde{\mathcal M}_{(n)})\) maps to \(K^{(n)}_{2n-p}(F)\). This leads to a proof of part of the Zagier conjecture for all \(n\geq 2\), since for \(p=1\) this map is an injection. Moreover, using work of Suslin, Goncharov and Zagier, the author shows that for \(n=2,3\) surjectivity holds as well, i.e., the maps \(H^1(\widetilde{\mathcal M}_{(n)})\to K^{(n)}_{2n-1}(F)\) are isomorphisms for \(n=2,3.\) The same result holds for all \(n\geq 2\) provided \(F=\mathbb{Q}(\zeta_N)\) is a cyclotomic field. Reviewer: M.Kolster (Hamilton/Ontario) Cited in 2 ReviewsCited in 8 Documents MSC: 19F15 Symbols and arithmetic (\(K\)-theoretic aspects) 11R70 \(K\)-theory of global fields 14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry 11R42 Zeta functions and \(L\)-functions of number fields Keywords:wedge complex; Borel regulator; polylogarithm; multi-relative \(K\)-theory; Zagier conjecture Citations:Zbl 0728.11062 PDF BibTeX XML Cite \textit{R. De Jeu}, Compos. Math. 96, No. 2, 197--247 (1995; Zbl 0868.19002) Full Text: Numdam EuDML OpenURL References: [1] Beilinson, S. : Higher regulators and values of L-functions , J. Sov. Math. 30 (1985), 2036-2070. · Zbl 0588.14013 [2] Beilinson, S. and Deligne, P. : Polylogarithms and regulators , Preprint, 1990. · Zbl 0799.19004 [3] Beilinson, S. and Deligne, P. : Motivic polylogarithm and Zagier’s conjecture , Preprint, 1992. [4] Bloch, S. : Higher Regulators, Algebraic K-Theory and Zeta Functions of Elliptic Curves , Lecture Notes U.C., Irvine, 1978. [5] Bloch, S. and Kriz, I. : Mixed Tate Motives , to appear in Ann. Math. · Zbl 0935.14014 [6] Borel, A. : Stable real cohomology of arithmetic groups , Ann. Sci. ENS 4 (1974), 235-272. · Zbl 0316.57026 [7] Borel, A. : Cohomology de SLn et valeurs de fonctions zêta aux points entires , Ann. Sci. Norm. Sup. Pisa 4 (1977), 613-636. · Zbl 0382.57027 [8] Bousfield, A.K. and Kan, D.M. : Homotopy Limits, Completions and Localizations , Lecture Notes in Math. 304, Springer-Verlag, Berlin, 1972. · Zbl 0259.55004 [9] Deligne, P. : Théorie de Hodge, II , Publ. Math. IHES 40 (1972), 5-57. · Zbl 0219.14007 [10] Deligne, P. : Interprétation motivique de la conjecture de Zagier reliant polylogarithms et régulateurs . Preprint, 1991. · Zbl 0799.19004 [11] Dold, A. and Puppe, D. : Homologie nicht-additiver Funktoren. Anwendungen , Ann. Inst. Fourier 11 (1961), 201-312. · Zbl 0098.36005 [12] Esnault, H. and Viehweg, E. : Deligne-Beilinson cohomology, in Beilinson’s Conjectures on Special Values of L-functions , Academic Press, New York, 1988, pp. 43-91. · Zbl 0656.14012 [13] Gillet, H. : Riemann-Roch theorems for higher algebraic K-theory , Adv. in Math. 40 (1981), 203-288. · Zbl 0478.14010 [14] Gillet, H. and Soulé, C. : Filtrations on higher algebraic K-theory, unpublished . · Zbl 0951.19003 [15] Goncharov, A.B. : Geometry of configurations, polylogarithms and motivic cohomology , to appear in Adv. Math. · Zbl 0863.19004 [16] Goncharov, A.B. : Polylogarithms and motivic Galois groups . 1992, Preprint. · Zbl 0842.11043 [17] Hartshorne, R. : Residues and Duality , Lecture Notes in Math. 20, Springer-Verlag, Berlin, 1966. · Zbl 0212.26101 [18] Jannsen, U. : Deligne homology, Hodge-D-conjecture, and motives , in Beilinson’s Conjectures on Special Values of L-functions , Academic Press, New York, 1988, pp. 305-372. · Zbl 0701.14019 [19] Joyal, A. : Letter to A. Grothendieck , 1984. [20] Kratzer, Ch. : \lambda -structure en K-théorie algébrique , Comm. Math. Helv. 55 (1980), 233-254. · Zbl 0444.18008 [21] Levine, M. : On the derived motivic category , Preprint. [22] Mac Lane, S. : Homology , Springer-Verlag, Berlin, 1963. [23] Milnor, J. : Introduction to Algebraic K-theory , Princeton University Press, Princeton, 1971. · Zbl 0237.18005 [24] Quillen, D. : Homotopical Algebra , Lecture Notes in Math. 43, Springer-Verlag, Berlin, 1967. · Zbl 0168.20903 [25] Quillen, D. : Higher algebraic K-theory I, in Algebraic K-theory 1 , Lecture Notes in Math., 341, Springer-Verlag, Berlin, 1973, pp. 85-147. · Zbl 0292.18004 [26] Soulé, C. : K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale , Inventiones Math. 55 (1979), 251-295. · Zbl 0437.12008 [27] Soulé, C. : Opérations en K-théorie algébrique , Can. J. Math. 37(3) (1985), 488-550. · Zbl 0575.14015 [28] Suslin, A.A. : K3 of a field and the Bloch group , Trudy Math. Inst. Steklov 189 (1990), 180-199 (in Russian). English translation: Proc. Steklov Inst. Math., 183-184 (1991), 217-239. · Zbl 0741.19005 [29] Tamme, G. : The theorem of Riemann-Roch, in Beilinson’s Conjectures on Special Values of L-functions , Academic Press, New York, 1988, pp. 103-168. · Zbl 0664.14004 [30] Voevodsky, V. : Homology of schemes and covariant motives , Preprint, 1992. [31] Zagier, D. : Polylogarithms, Dedekind Zetafunctions, and the Algebraic K-Theory of Fields , in Arithmetic Algebraic Geometry , Birkhäuser, 1991, pp. 391-430. · Zbl 0728.11062 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.