×

On the solution set of nonconvex subdifferential evolution inclusions. (English) Zbl 0868.34010

The paper investigates the nonconvex differential inclusion \[ -t(\dot x)\in\partial\varphi (t,x(t))+\text{ext }F(t,x(t))\quad \text{a.e.,}\quad x(0)=x_0 \] where \(\partial\) stands for the subdifferential operator and \(\text{ext }F(t,x)\) for the extreme points of \(F(t,x)\). Such a problem occurs in the control theory of differential equations (bang-bang principles).

MSC:

34A60 Ordinary differential inclusions
35A07 Local existence and uniqueness theorems (PDE) (MSC2000)
34H05 Control problems involving ordinary differential equations
34G20 Nonlinear differential equations in abstract spaces

References:

[1] H. Attouch: Variantional Convergence for Functionals and Operators. Pitman, London, 1984.
[2] J.-P. Aubin and A. Cellina: Differential Inclusions. Springer, Berlin, 1984.
[3] J.-P. Aubin and J. Ekeland: Applied Nonlinear Analysis. Wiley, New York, 1983.
[4] E. Balder: Necessary and sufficient conditions for \(L_1\)-strong-weak lower semicontinuity of integral functionals. Nonl. Anal. - TMA 11 (1987), 1399-1404. · Zbl 0638.49004 · doi:10.1016/0362-546X(87)90092-7
[5] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leyden, The Netherlands, 1976. · Zbl 0328.47035
[6] M. Benamara: Points Extremaux Multi-applications et Fonctionelles Integrales. These du 3ème cycle, Université de Grenoble, 1975.
[7] H. Brezis: Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert. North Holland, Amsterdam, 1973.
[8] G. Choquet: Lectures on Analysis, Vol. II. Benjamin, New York, 1969. · Zbl 0181.39602
[9] F. S. DeBlassi and G. Pianigiani: Non-convex valued differential inclusions in Banach spaces. J. Math. Anal. Appl. 157 (1991), 469-494. · Zbl 0728.34013 · doi:10.1016/0022-247X(91)90101-5
[10] J. Diestel and J. Uhl: Vector Measures, Math Surveys, Vol. 15. A.M.S., Providence, R.I., 1977. · Zbl 0369.46039
[11] A. Fryszkowski: Continuous selections for a class of nonconvex multivalued maps. Studia Math 78 (1983), 163-174. · Zbl 0534.28003
[12] C. Henry: Differential equations with discontinuous right-hand side for planning procedures. J. Econ. Theory 4 (1972), 545-551. · doi:10.1016/0022-0531(72)90138-X
[13] F. Hiai and H. Umegaki: Integrals, conditional expectations and martingales of multivalued functions. J. Multiv. Anal. 7 (1977), 149-182. · Zbl 0368.60006 · doi:10.1016/0047-259X(77)90037-9
[14] R. Holmes: Geometric Functional Analysis and its Applications. Springer, Berlin, 1975. · Zbl 0336.46001
[15] E. Klein and A. Thompson: Theory of Correspondences. Wiley, New York, 1984.
[16] D. Kravvaritis and N. S. Papageorgiou: Multivalued perturbations of subdifferential type evolution equations in Hilbert spaces. J. Diff. Eqns. 76 (1988), 238-255. · Zbl 0667.34078 · doi:10.1016/0022-0396(88)90073-3
[17] J.-J. Moreau: Evolution problem associated with a moving convex set in a Hilbert space. J. Diff. Eqns. 26 (1977), 347-374. · Zbl 0356.34067 · doi:10.1016/0022-0396(77)90085-7
[18] N. S. Papageorgiou: On measurable multifunctions with applications to random multivalued equations. Math. Japonica 32 (1987), 437-464. · Zbl 0634.28005
[19] N. S. Papageorgiou: Convergence theorems for Banach space valued integrable multifunctions. intern. J. Math and Math. Sci. 10 (1987), 433-442. · Zbl 0619.28009 · doi:10.1155/S0161171287000516
[20] N. S. Papageorgiou: Differential inclusions with state constraints. Proceedings of the Edinburgh Math. Soc. 32 (1989), 81-98. · Zbl 0704.49009 · doi:10.1017/S0013091500006933
[21] N. S. Papageorgiou: On evolution inclusions associated with time dependent convex subdifferentials. Comm. Math. Univ. Carol. 31 (1990), 517-527. · Zbl 0711.34076
[22] A. Plis: Trajectories and quasi-trajectories of an orientor field. Bull. Acad. Polon. Sci. 10 (1962), 529-531.
[23] A. Tolstonogov: Extreme continuous selectors of multivalued maps and the bang-bang principle for evolution inclusions. Soviet Math. 317 (1991), 1-8. · Zbl 0784.54024
[24] D. Wagner: Survey of measurable selection theorems. SIAM J. Cont. Optim. 15 (1977), 859-903. · Zbl 0407.28006 · doi:10.1137/0315056
[25] J. Watanabe: On certain nonlinear evolution equations. J. Math. Soc. Japan 25 (1973), 446-463. · Zbl 0253.35053 · doi:10.2969/jmsj/02530446
[26] S. Yotsutani: Evolution equations associated with subdifferentials. J. Math. Soc. Japan 31 (1978), 623-646. · Zbl 0405.35043 · doi:10.2969/jmsj/03140623
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.