## The Morse-Smale structure of a generic reaction-diffusion equation in higher space dimension.(English)Zbl 0868.35062

Consider the Dirichlet problem for the reaction-diffusion equation $u_t= \Delta u+f(x,u),\quad t>0,\;x\in\Omega,\quad u=0,\quad t>0,\;x\in\partial\Omega.\tag{1}$ Here $$\Omega$$ is a bounded domain in $$\mathbb{R}^N$$ with smooth boundary and $$f$$ is a sufficiently regular function on $$\overline\Omega\times\mathbb{R}$$. Problem (1) defines a local semiflow on an appropriate Banach space, for example, the Sobolev space $$W^{1,p}_0(\Omega)$$ with $$p>N$$. This semiflow is gradient-like: the energy functional $\varphi\mapsto \int_\Omega(\textstyle{{1\over 2}}|\nabla \varphi(x)|^2- F(x,\varphi(x)))dx,$ where $$F(x,u)$$ is the antiderivative of $$f(x,u)$$ with respect to $$u$$, decreases along nonconstant trajectories. In higher space dimensions, stable and unstable manifolds of hyperbolic equilibria can intersect nontransversally. One of the main objectives of the present paper is to prove that generically this cannot happen. To formulate the result precisely, let $$k$$ be a positive integer and let $$\mathfrak G$$ denote the space of all $$C^k$$ functions $$f:\overline\Omega\times\mathbb{R}\to\mathbb{R}$$ endowed with the $$C^k$$ Whitney topology. This is the topology in which the collection of all the sets $\{g\in{\mathfrak G}:|D^if(x,u)- D^ig(x,u)|< \delta(u),\;i=0,\dots,k,\;x\in\overline\Omega,\;u\in\mathbb{R}\},$ where $$\delta$$ is a positive continuous function on $$\mathbb{R}$$, forms a neighborhood basis of an element $$f$$. Recall that $$\mathfrak G$$ is a Baire space: any residual set is dens in $$\mathfrak G$$. Our main result reads as follows.
Theorem. There is a residual set $${\mathfrak G}^{\text{MS}}$$ in $$\mathfrak G$$ such that for any $$f\in{\mathfrak G}^{\text{MS}}$$ all equilibria of (1) are hyperbolic and if $$\varphi^-$$, $$\varphi^+$$ are any two such equilibria then their stable and unstable manifolds intersect transversally.

### MSC:

 35K65 Degenerate parabolic equations 37D15 Morse-Smale systems 35K57 Reaction-diffusion equations
Full Text:

### References:

  Abraham, R.; Marsden, J. E.; Ratiu, T., Manifolds, Tensor Analysis and Applications (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0875.58002  Abraham, R.; Robbin, J., Transversal Mappings and Flows (1967), Benjamin: Benjamin New York · Zbl 0171.44404  Alessandrini, G.; Vessella, S., Local behavior of solutions of parabolic equations, Comm. Partial Differential Equations, 13, 1041-1057 (1988) · Zbl 0649.35040  Amann, H., Linear and Quasilinear Parabolic Problems (1995), Birkhäuser: Birkhäuser Berlin  Angenent, S. B., The Morse-Smale property for a semilinear parabolic equation, J. Differential Equations, 62, 427-442 (1986) · Zbl 0581.58026  Babin, A. V.; Vishik, M. I., Regular attractors of semigroups of evolutionary equations, J. Math. Pures Appl., 62, 441-491 (1983) · Zbl 0565.47045  Bates, P. W.; Lu, K., A Hartman-Grobman theorem for Cahn Hilliard equations and phase-field equations, J. Dynam. Differential Equations, 6, 101-145 (1994) · Zbl 0795.35052  Blazquez, C. M., Transverse homoclinic orbits in periodically perturbed parabolic equations, Nonlinear Anal., 10, 1277-1291 (1986) · Zbl 0612.58040  Brunovský, P.; Chow, S.-N., Generic properties of stationary solutions of reaction diffusion equations, J. Differential Equations, 53, 1-23 (1984) · Zbl 0544.34019  Chen, M.; Chen, X.-Y.; Hale, J. K., Structural stability for time-periodic one-dimensional parabolic equations, J. Differential Equations, 96, 355-418 (1992) · Zbl 0779.35061  Chow, S.-N.; Lu, K., Smooth invariant foliations in infinite dimensional spaces, J. Differential Equations, 94, 266-291 (1991) · Zbl 0749.58043  Coppel, W. A., Dichotomies in Stability Theory (1978), Springer-Verlag: Springer-Verlag Berlin · Zbl 0376.34001  Daners, D.; Koch Medina, P., Abstract Evolution Equations, Periodic Problems and Applications (1992), Longman: Longman Harlow · Zbl 0789.35001  Eirola, T.; Pilyugin, S. Y., Pseudotrajectories generated by a discretization of a parabolic equation, J. Dynam. Differential Equations, 8, 281-297 (1996) · Zbl 0857.34046  Engelking, R., General Topology (1985), PWN: PWN Warsaw  Golubitsky, M.; Guillemin, V., Stable Mappings and Their Singularities (1974), Springer-Verlag: Springer-Verlag New York · Zbl 0294.58004  Hale, J. K.; Lin, X.-B., Heteroclinic orbits for retarded functional differential equations, J. Differential Equations, 65, 175-202 (1986) · Zbl 0611.34074  Hale, J. K.; Magalhães, L. T.; Oliva, W. M., An Introduction to Infinite-Dimensional Dynamical Systems—Geometric Theorey (1984), Springer-Verlag: Springer-Verlag New York · Zbl 0533.58001  Hale, J. K.; Raugel, G., Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 71, 33-95 (1992) · Zbl 0840.35044  Han, Q.; Lin, F. H., Nodal sets of solutions of parabolic equations, II, Comm. Pure Appl. Math., 47, 1219-1238 (1994) · Zbl 0807.35052  Henry, D., Geometric Theory of Semilinear Parabolic Equations (1981), Springer-Verlag: Springer-Verlag New York · Zbl 0456.35001  Henry, D., Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations, J. Differential Equations, 59, 165-205 (1985) · Zbl 0572.58012  Kato, T., Perturbation Theory for Linear Operators (1966), Springer-Verlag: Springer-Verlag Berlin · Zbl 0148.12601  Koch, H., Finite dimensional aspects of semilinear parabolic equations, J. Dynam. Differential Equations, 8, 177-202 (1996) · Zbl 0860.35056  Kupka, I.; Oliva, W. M., Dissipative mechanical systems, Resenhas, 1, 69-115 (1993) · Zbl 0852.58004  Lin, X.-B., Exponential dichotomies and homoclinic orbits in functional differential equations, J. Differential Equations, 63, 227-254 (1986) · Zbl 0589.34055  Lu, K., A Hartman-Grobman theorem for reaction-diffusion equations, J. Differential Equations, 93, 364-394 (1991) · Zbl 0767.35039  Lunardi, A., Analyticity of the maximal solution of an abstract nonlinear parabolic equation, Nonlinear Anal., 6, 505-521 (1982) · Zbl 0486.35017  Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems (1995), Birkhäuser: Birkhäuser Berlin · Zbl 0816.35001  Miranda, C., Partial Differential Equations of Elliptic Type (1970), Springer-Verlag: Springer-Verlag Berlin · Zbl 0198.14101  Mora, X.; Solà-Morales, J., The singular limit dynamics of semilinear wave equations, J. Differential Equations, 78, 261-307 (1989) · Zbl 0699.35177  Palis, J., On Morse-Smale dynamical systems, Topology, 8, 385-404 (1989) · Zbl 0189.23902  Palis, J.; de Melo, W., Geometric Theory of Dynamical Systems (1982), Springer-Verlag: Springer-Verlag New York  Palis, J.; Smale, S., Structural stability theorems, Global Analysis. Global Analysis, Proceedings of Symposic in Pure Mathematics, Vol. 14 (1970), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 0214.50702  Palmer, K., Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55, 225-256 (1984) · Zbl 0508.58035  Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0516.47023  Poláčik, P., Generic hyperbolicity in one-dimensional reaction diffusion equations with general boundary conditions, Nonlinear Anal., 11, 593-597 (1987) · Zbl 0639.35039  Poláčik, P., Transversal and nontransversal intersections of stable and unstable manifolds in reaction diffusion equations on symmetric domains, Differential Integral Equations, 7, 1527-1545 (1994) · Zbl 0809.35041  Quinn, F., Transversal approximation on Banach manifolds, Proceedings of Symposic in Pure and Applied Mathematics (1970), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 0206.25705  Quittner, P., Singular sets and number of solutions of nonlinear boundary value problem, Commen. Math. Univ. Carolin., 24, 371-385 (1983) · Zbl 0529.35027  Rocha, C., Generic properties of equilibria of reaction-diffusion equations with variable diffusion, Proc. Roy. Soc. Edinburgh Ser. A, 101, 45-55 (1985) · Zbl 0601.35053  Rynne, B. P., Genericity of hyperbolicity and saddle-node bifurcations in reaction-diffusion equations depending on a parameter, J. Appl. Math. Phys. (ZAMP), 47, 730-739 (1996) · Zbl 0861.35010  Salamon, D., Morse theory, the Conley index and Floer homology, Bull. London Math. Soc., 22, 113-140 (1990) · Zbl 0709.58011  Saut, J.; Temam, R., Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations, 4, 293-319 (1979) · Zbl 0462.35016  Schwarz, M., Morse Homology (1993), Birkhäuser: Birkhäuser Basel/Boston  Shub, M., Global Stability of Dynamical Systems (1987), Springer-Verlag: Springer-Verlag New York  Smoller, J., Shock Waves and Reaction-Diffusion Equations (1967), Springer-Verlag: Springer-Verlag New York  Takens, F., Mechanical and gradient systems: Local perturbation and generic properties, Bol. Soc. Bras. Mat., 14, 147-162 (1983) · Zbl 0572.58008  Uhlenbeck, K., Generic properties of eigenfunctions, Amer. J. Math., 98, 1059-1078 (1976) · Zbl 0355.58017  Zhang, W., The Fredholm alternative and exponential dichotomies for parabolic equations, J. Math. Anal. Appl., 191, 180-201 (1995) · Zbl 0832.34050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.