×

Compact spaces that result from adequate families of sets. (English) Zbl 0869.54003

Topology Appl. 65, No. 3, 257-270 (1995); erratum ibid. 72, No. 2, 99 (1996).
Summary: We consider compact spaces defined by adequate families of sets as well as continuous images of such spaces which are called AD-compact. The class of AD-compact spaces contains all polyadic spaces. We note some general properties of AD-compact spaces. We prove that there are nonpolyadic AD-compact spaces having a strictly positive measure. We also show that some results on Banach spaces \(C(K)\) valid for a dyadic \(K\) may be extended to \(K\) being AD-compact.

MSC:

54A05 Topological spaces and generalizations (closure spaces, etc.)
46E15 Banach spaces of continuous, differentiable or analytic functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Antonovskiĭ, M.; Chudnovskiĭ, D., Some questions of general topology and Tychonoff semifields II, Russian Math. Surveys, 31, 69-128 (1976) · Zbl 0355.54006
[2] Argyros, S., Functional analytic properties of Corson-compact spaces, Studia Math., 89, 197-228 (1988) · Zbl 0656.46014
[3] Arhangel’skiĭ, A. V., Topological Function Spaces (1992), KAPG: KAPG Dordrecht · Zbl 0911.54004
[4] Comfort, W. W.; Negrepontis, S., Chain Conditions in Topology (1982), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0488.54002
[5] Dz̆amonja, M.; Kunen, K., Measures on compact HS-spaces, Fund. Math., 143, 41-54 (1993) · Zbl 0805.28008
[6] Edgar, G. A., Measurability in a Banach space, Indiana Univ. Math. J., 26, 663-677 (1977) · Zbl 0361.46017
[7] Edgar, G. A., Measurability in a Banach space II, Indiana Univ. Math. J., 28, 559-579 (1979) · Zbl 0418.46034
[8] Engelking, R., General Topology (1977), PWN: PWN Warsaw · Zbl 0373.54002
[9] Fremlin, D. H., Consequences of Martin’s Axiom (1984), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0551.03033
[10] Fremlin, D. H., Measure algebras, (Monk, J. D.; Bonnet, R., Handbook of Boolean Algebras (1989), North-Holland: North-Holland Amsterdam), Ch. 22 · Zbl 1225.28012
[11] Gerlits, J., On a problem of S. Mrówka, Period. Math. Hungar., 4, 71-80 (1973) · Zbl 0275.54005
[12] Gerlits, J., On a generalization of dyadicity, Studia Sci. Math. Hungar., 13, 1-17 (1978) · Zbl 0475.54012
[13] Haydon, R., On Banach spaces which contain \(l^1(τ)\) and types of measures on compact spaces, Israel J. Math., 28, 313-324 (1977) · Zbl 0365.46020
[14] Haydon, R., On dual \(L^1\)-spaces and injestive bidual Banach spaces, Israel J. Math., 31, 142-152 (1978) · Zbl 0407.46018
[15] Kalamidas, N. D., Chain condition and continuous mappings on \(C_p(X)\), (Rend. Sem. Math. Univ. Padova, 87 (1992)), 19-27 · Zbl 0767.54003
[16] Kappeler, T., Banach spaces with the Condition of Mazur, Math. Z., 191, 623-631 (1986) · Zbl 0658.46010
[17] Leiderman, A. G.; Sokolov, G. A., Adequate families of sets and Corson compacts, Comm. Math. Univ. Carolin., 25, 233-256 (1984) · Zbl 0586.54022
[18] Leung, D. H., On Banach spaces with Mazur’s property, Glasgow Math. J., 33, 51-54 (1991) · Zbl 0745.46021
[19] Marciszewski, W., Order types, calibres and spread of Corson compacta, Topology Appl., 42, 291-299 (1991) · Zbl 0768.54001
[20] Marty, R., On \(m\)-adic spaces, Acta Math. Acad. Sci. Hungar., 22, 441-447 (1971) · Zbl 0235.54008
[21] Mazur, S., On continuous mappings on Cartesian products, Fund. Math., 39, 229-238 (1952) · Zbl 0050.16802
[22] Mrówka, S., Mazur theorem and \(m\)-adic spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math., 18, 299-305 (1970) · Zbl 0194.54302
[23] Negrepontis, S., Banach spaces and topology, (Kunen, K.; Vaughan, J. E., Handbook of Set-Theoretic Topology (1984), North-Holland: North-Holland Amsterdam), Ch. 23 · Zbl 0584.46007
[24] Noble, N., The continuity of functions on cartesian products, Trans. Amer. Math. Soc., 149, 187-197 (1970) · Zbl 0229.54028
[25] Plebanek, G., On the space of continuous functions on a dyadic set, Mathematika, 38, 42-49 (1991) · Zbl 0776.46019
[26] Plebanek, G., On Mazur property and realcompactness in \(C(K)\), (Bandt, C.; etal., Topology, Measures and Fractals, Mathematical Research, 66 (1992), Akademie-Verlag: Akademie-Verlag Berlin), 27-36 · Zbl 0850.46019
[27] Plebanek, G., Remarks on measurable Boolean algebras and sequential cardinals, Fund. Math., 143, 11-22 (1993) · Zbl 0788.28003
[28] Semadeni, Z., Banach Spaces of Continuous Functions (1971), PWN: PWN Warszawa · Zbl 0117.33002
[29] Shapirovskiĭ, B. E., Special types of embeddings in Tychonoff cubes. Subspaces of Σ-products and cardinal invariants, (Csaszar, A., Topology, Vol. II (1980), North-Holland: North-Holland Amsterdam), 1055-1186 · Zbl 0437.54008
[30] Talagrand, M., Espaces de Banach faiblement \(K\)-analytiques, Ann. of Math., 110, 407-438 (1979) · Zbl 0393.46019
[31] Talagrand, M., A new countably determined Banach space, Israel J. Math., 47, 75-80 (1984) · Zbl 0537.46019
[32] Talagrand, M., Pettis integral and measure theory, Mem. Amer. Math. Soc., 51, 307 (1984) · Zbl 0582.46049
[33] Uspenskiĭ, V. V., A characterization of realcompactness in terms of the topology of pointwise convergence on the function spaces, Comment. Math. Univ. Carolin., 24, 121-125 (1983) · Zbl 0528.54007
[34] Wilansky, A., Mazur spaces, Internat. J. Math. Math. Sci., 4, 39-53 (1981) · Zbl 0466.46005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.