Rio, Emmanuel About the Lindeberg method for strongly mixing sequences. (English) Zbl 0869.60021 ESAIM, Probab. Stat. 1(1997), 35-61 (1995). Summary: We extend the Lindeberg method for the central limit theorem to strongly mixing sequences. Here we obtain a generalization of the central limit theorem of Doukhan, Massart and Rio to nonstationary strongly mixing triangular arrays. The method also provides estimates of the Lévy distance between the distribution of the normalized sum and the standard normal. Cited in 1 ReviewCited in 32 Documents MSC: 60F05 Central limit and other weak theorems Keywords:deviation inequalities; concentration of measure; logarithmic Sobolev inequalities; empirical processes; central limit theorem; strongly mixing triangular arrays; Lévy distance × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] BASS, J., ( 1955), Sur la compatibilité des fonctions de répartition. C.R. Acad. Sci. Paris. 240 839-841. Zbl0064.12804 MR68149 · Zbl 0064.12804 [2] BERGSTRÖM, H., ( 1972), On the convergence of sums of random variables in distribution under mixing condition. Periodica math. Hungarica. 2 173-190 Zbl0252.60009 MR350814 · Zbl 0252.60009 · doi:10.1007/BF02018660 [3] BERKES, I. and PHILIPP, W. ( 1979), Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7 29-54. Zbl0392.60024 MR515811 · Zbl 0392.60024 · doi:10.1214/aop/1176995146 [4] BOLTHAUSEN, E., ( 1980), The Berry-Esseen theorem for functionals of discrete Markov chains. Z. Wahrsch. verw. Gebiete. 54 59-73. Zbl0431.60019 MR595481 · Zbl 0431.60019 · doi:10.1007/BF00535354 [5] BOLTHAUSEN, E., ( 1982), The Berry-Esseen theorem for strongly mixing Harris recurrent Markov chains. Z. Wahrsch. verw. Gebiete 60 283-289. Zbl0476.60022 MR664418 · Zbl 0476.60022 · doi:10.1007/BF00535716 [6] BULINSKII, A. V. and DOUKHAN, P., ( 1990), Vitesse de convergence dans le théorème de limite centrale pour des champs mélangeants satisfaisant des hypothèses de moment faibles. C. R. Acad. Sci. Paris, Série 1, 311 801-805. Zbl0719.60020 MR1082637 · Zbl 0719.60020 [7] DAVYDOV, YU. A., ( 1968), Convergence of distributions generated by stationary stochastic processes. Theory Probab. Appl. 13 691-696. Zbl0181.44101 · Zbl 0181.44101 · doi:10.1137/1113086 [8] DOUKHAN, P., ( 1991), Consistency of \delta -estimates for a regression or a density in a dependent framework. Séminaire d’Orsay 1989-1990: Estimation fonctionnelle. Prépublication mathématique de l’université de Paris-Sud. [9] DOUKHAN, P., ( 1994), Mixing. Properties and Examples. Lecture Notes in Statistics 85. Springer, New York. Zbl0801.60027 MR1312160 · Zbl 0801.60027 [10] DOUKHAN, P., LÉON, J. and PORTAL, F., ( 1984), Vitesse de convergence dans le théorème central limite pour des variables aléatoires mélangeantes à valeurs dans un espace de Hilbert. C. R. Acad. Sci. Paris Série 1, 298 305-308. Zbl0557.60006 MR765429 · Zbl 0557.60006 [11] DOUKHAN, P., LÉON, J. and PORTAL, F., ( 1985), Calcul de la vitesse de convergence dans le théorème central limite vis à vis des distances de Prohorov, Dudley et Lévy dans le cas de variables aléatoires dépendantes. Probab. Math. Stat. 6 19-27. Zbl0607.60019 MR845525 · Zbl 0607.60019 [12] DOUKHAN, P., MASSART, P. and Rio, E., ( 1994), The functional central limit Theorem for strongly mixing processes. Annales inst. H. Poincaré Probab. Statist. 30 63-82. Zbl0790.60037 MR1262892 · Zbl 0790.60037 [13] DOUKHAN, P. and PORTAL, F., ( 1983a), Principe d’invariance faible avec vitesse pour un processus empirique dans un cadre multidimensionnel et fortement mélangeant. C. R. Acad. Sci. Paris, Série 1, 297 505-508. Zbl0529.60029 · Zbl 0529.60029 [14] DOUKHAN, P. and PORTAL, F., ( 1983b), Moments de variables aléatoires mélangeantes, C. R. Acad. Sci. Paris, Série 1, 297 129-132. Zbl0544.62022 MR720925 · Zbl 0544.62022 [15] DOUKHAN, P. and PORTAL, F., ( 1987), Principe d’invariance faible pour la fonction de répartition empirique dans un cadre multidimensionnel et mélangeant. Probab. Math. Stat. 8 117-132. Zbl0651.60042 MR928125 · Zbl 0651.60042 [16] ESSEEN, C., ( 1945), Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law. Acta Math. 77 1-125. Zbl0060.28705 MR14626 · Zbl 0060.28705 · doi:10.1007/BF02392223 [17] FRÉCHET, M., ( 1951), Sur les tableaux de corrélation dont les marges sont données. Annales de l’université de Lyon, Sciences, section A. 14 53-77. Zbl0045.22905 MR49518 · Zbl 0045.22905 [18] FRÉCHET, M., ( 1957), Sur la distance de deux lois de probabilité. C. R. Acad. Sci. Paris 244 689-692. Zbl0077.33007 MR83210 · Zbl 0077.33007 [19] GORDIN, M. I., ( 1969), The central limit theorem for stationary processes. Soviet Math. Dokl. 10 1174-1176. Zbl0212.50005 MR251785 · Zbl 0212.50005 [20] GÓTZE, F. and HlPP, C., ( 1983), Asymptotic expansions for sums of weakly dependent random vectors. Z. Wahrsch. verw. Gebiete. 64 211-239. Zbl0497.60022 MR714144 · Zbl 0497.60022 · doi:10.1007/BF01844607 [21] HALL, P. and Heyde, C. C., ( 1980), Martingale limit theory and its applications, Academic Press. Zbl0462.60045 MR624435 · Zbl 0462.60045 [22] IBRAGIMOV, I. A., ( 1962), Some limit theorems for stationary processes. 7 349-382. Zbl0119.14204 MR148125 · Zbl 0119.14204 · doi:10.1137/1107036 [23] IBRAGIMOV, I. A. and LINNIK, Y. V., ( 1971), Independent and stationary sequences of random variables, Wolters-Noordhoff, Amsterdam. Zbl0219.60027 MR322926 · Zbl 0219.60027 [24] KRIEGER, H. A., ( 1984), A new look at Bergström’s theorem on convergence in distribution for sums of dependent random variables. Israel J. Math. 47 32-64. Zbl0536.60032 MR736063 · Zbl 0536.60032 · doi:10.1007/BF02760561 [25] LlNDEBERG, J. W., ( 1922), Eine neue Herleitung des Exponentialgezetzes in der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, 15 211-225. MR1544569 JFM48.0602.04 · JFM 48.0602.04 [26] PELIGRAD, M., ( 1995), On the asymptotic normality of sequences of weak dependent random variables. To appear in J. of Theoret. Probab. Zbl0855.60021 MR1400595 · Zbl 0855.60021 · doi:10.1007/BF02214083 [27] PELIGRAD, M. and UTEV, S., ( 1994), Central limit theorem for stationary linear processes. Preprint. MR2257658 · Zbl 1101.60014 [28] PETROV, V. V., ( 1975), Sums of independent random variables. Springer, Berlin. Zbl0322.60042 MR388499 · Zbl 0322.60042 [29] RIO, E., ( 1993), Covariance inequalities for strongly mixing processes. Annales inst. H. Poincaré Probab. Statist. 29 587-597. Zbl0798.60027 MR1251142 · Zbl 0798.60027 [30] RIO, E., ( 1994), Inégalités de moments pour les suites stationnaires et fortement mélangeantes. C. R. Acad. Sci. Paris, Série I. 318 355-360. Zbl0797.60011 MR1267615 · Zbl 0797.60011 [31] ROSENBLATT, M., ( 1956), A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. U.S.A. 42 43-47. Zbl0070.13804 MR74711 · Zbl 0070.13804 · doi:10.1073/pnas.42.1.43 [32] ROSENTHAL, H. P., ( 1970), On the subspaces of Lp, (p > 2) spanned by sequences of independent random variables. Israel J. Math. 8 273-303. Zbl0213.19303 MR271721 · Zbl 0213.19303 · doi:10.1007/BF02771562 [33] SAMUR, J. D., ( 1984), Convergence of sums of mixing triangular arrays of random vectors with stationary rows. Ann. Probab. 12 390-426. Zbl0542.60012 MR735845 · Zbl 0542.60012 · doi:10.1214/aop/1176993297 [34] STEIN, C., ( 1972), A bound on the error in the normal approximation to the distribution of a sum of dependent random variables. Proc. Sixth Berkeley Symp. Math. Statist. and Prob. II 583-602. Zbl0278.60026 MR402873 · Zbl 0278.60026 [35] TlKHOMIROV, A. N., ( 1980), On the convergence rate in the central limit theorem for weakly dependent random variables. Theor. Probab. Appl. 25 790-809. Zbl0471.60030 MR595140 · Zbl 0471.60030 · doi:10.1137/1125092 [36] UTEV, S., ( 1985), Inequalities and estimates of the convergence rate for the weakly dependent case. Proceedings of the institut e of mathematics Novosibirsk. Limit theorems for sums of random variables. Adv. in Probab. Theory. 73-114. Editor A. A. Borovkov. Optimization Software, Inc. New York. Zbl0591.60016 · Zbl 0591.60016 [37] YOKOYAMA, R., ( 1980), Moment bounds for stationary mixing sequences. Z. Wahrsch. verw. Gebiete. 52 45-57. Zbl0407.60002 MR568258 · Zbl 0407.60002 · doi:10.1007/BF00534186 [38] YURINSKII, V. V., ( 1977), On the error of the Gaussian approximation for convolutions. Theory Probab. Appl. 22 236-247. Zbl0378.60008 MR517490 · Zbl 0378.60008 · doi:10.1137/1122030 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.