zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical study of Lorenz’s equation by the Adomian method. (English) Zbl 0869.65044
Summary: We use the decomposition method of Adomian for solving differential systems coming from physics (meteorology). We also give a comparison between the Runge-Kutta method and the decomposition technique. Furthermore, we reconfirm the famous “butterfly effect”.

MSC:
65L05Initial value problems for ODE (numerical methods)
65L60Finite elements, Rayleigh-Ritz, Galerkin and collocation methods for ODE
34A34Nonlinear ODE and systems, general
86A10Meteorology and atmospheric physics
WorldCat.org
Full Text: DOI
References:
[1] Adomian, G.: Nonlinear stochastic systems and application to physics. (1989) · Zbl 0659.93003
[2] Adomian, G.: A review of the decomposition method and some results for nonlinear equations. Mathl. comput. Modelling 13, No. 7, 17-43 (1990) · Zbl 0713.65051
[3] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[4] Abbaoui, K.; Cherruault, Y.: Convergence of Adomian’s method applied to differential equations. Mathl. comput. Modelling 28, No. 5, 103-109 (1994) · Zbl 0809.65073
[5] Abbaoui, K.; Cherruault, Y.: New ideas for proving convergence of decomposition methods. Computers math. Applic. 29, No. 7, 103-108 (1995) · Zbl 0832.47051
[6] Cherruault, Y.: Convergence of Adomian’s method. Kybernetes 18, No. 2, 31-38 (1989) · Zbl 0697.65051
[7] Cherruault, Y.; Adomian, G.: Decomposition method: A new proof of convergence. Mathl. comput. Modelling 18, No. 12, 103-106 (1993) · Zbl 0805.65057
[8] Cherruault, Y.; Adomian, G.; Abbaoui, K.; Rach, R.: Further remarks on convergence of decomposition. I.j.b.c. 38, 89-93 (1995)
[9] Guellal, S.; Cherruault, Y.: Practical formulae for calculation of Adomian’s polynomials and application to the convergence of the decomposition method. I.j.b.c. 36, 223-228 (1994)
[10] Abbaoui, K.; Cherruault, Y.; Seng, V.: Practical formulae for the calculus of multivariable Adomian’s polynomials. Mathl. comput. Modelling 22, No. 1, 89-93 (1995) · Zbl 0830.65010
[11] Abbaoui, K.; Cherruault, Y.; N’dour, M.: The decomposition method applied to differential equation systems. Kybernetes 24, No. 8, 32-40 (1995) · Zbl 0932.65081
[12] Sparrow, C.: The Lorenz equations: bifurcations, chaos and stranger attractors. (1985)
[13] P. Grimalt, Hacia modelaciones matemáticas del músculo cardiaco: Bases y teorías que lo fundamentan, Fundación general de la Universidad Complutense de Madrid, Cursos de verano del Escorial, Madrid (to appear).
[14] Kaplan, D.; Glass, L.: Understanding non-linear dynamics. (1995) · Zbl 0823.34002
[15] Guellal, S.; Cherruault, Y.: Application of the decomposition method to identify the distributed parameters of elliptical equation. Mathl. comput. Modelling 21, No. 4, 51-55 (1994) · Zbl 0822.65120