×

Existence of solutions for vector optimization. (English) Zbl 0869.90063

Summary: We prove the existence of a weak minimum for constrained vector optimization problems by making use of vector variational-like inequality and preinvex functions.

MSC:

90C29 Multi-objective and goal programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Craven, B. D., Nonlinear programmming in locally convex spaces, J. Optim. Theory Appl., 10, 197-210 (1972) · Zbl 0229.90041
[2] Craven, B. D., Lagrangian conditions and quasiduality, Bull. Austral. Math. Soc., 16, 325-339 (1977) · Zbl 0362.90106
[3] Craven, B. D., Invex functions and constrained local minima, Bull. Austral. Math. Soc., 24, 357-366 (1981) · Zbl 0452.90066
[4] Hanson, M. A., On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80, 545-550 (1982) · Zbl 0463.90080
[5] Kuhn, H. W.; Tucker, A. W., Nonlinear programming, (Neyman, J., Proceedings of the Second Berkely Symposium on Mathematical Statistics and Probability (1951), University of California Press: University of California Press Berkely, CA), 481-492 · Zbl 0044.05903
[6] Wolfe, P., A duality theorem for nonlinear programming, Quart. Appl. Math., 19, 239-244 (1961) · Zbl 0109.38406
[7] Craven, B. D.; Glover, B. M., Invex functions and duality, J. Austral. Math. Soc., (Series A), 39, 1-20 (1985) · Zbl 0565.90064
[8] Ben-Isreal, A.; Mond, B., What is invexity?, J. Austral. Math. Soc., (Series B), 28, 1-9 (1986) · Zbl 0603.90119
[9] Hanson, M. A.; Mond, B., Convex transformalle programming problems and invexity, (Florida State University Statistics Report (1985)), M715 · Zbl 0641.90070
[10] Kaul, R. N.; Kaur, S., Sufficient optimality conditions using generalized convex functions, Opsearch, 19, 212-224 (1982) · Zbl 0517.90068
[11] Borwein, J. M., On the existence of Pareto efficient points, Maths. Oper. Res., 8, 64-73 (1983) · Zbl 0508.90080
[12] Corley, H. W., An existence result for maximization with respect to cones, J. Optim. Theory Appl., 31, 277-281 (1980) · Zbl 0416.90068
[13] Jahn, J., Mathematical Vector Optimization in Partially-Ordered Linear Spaces (1986), Peter Lang: Peter Lang Frankfort am Main, Germany · Zbl 0578.90048
[14] Yu, P. L., Cone convexity, cone extreme points and nondomonated solutions in decision problems with multi-objectives, J. Optim. Theory Appl., 14, 319-377 (1974) · Zbl 0268.90057
[15] Chen, G. Y., Existence of solutions for a vector variational inequality: An extension of the Hartmann-Stampacchia Theorem, J. Optim. Theory Appl., 74, 445-456 (1992) · Zbl 0795.49010
[16] Fan, K., A generalization of Tychonoff’s fixed point theorem, Math. Annals, 142, 305-310 (1961) · Zbl 0093.36701
[17] Chen, G. Y.; Craven, B. D., Existence and continuity for vector optimization, J. Optim. Theory Appl., 81, 459-468 (1994) · Zbl 0810.90112
[18] Weir, T.; Jeyakumar, V., A class of nonconvex functions and mathematical programming, Bull. Austral. Math. Soc., 38, 177-189 (1988) · Zbl 0639.90082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.