zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy multiple attribute decision making: A review and new preference elicitation techniques. (English) Zbl 0869.90083
Summary: This paper reviews the main theories and methods used for multiple attribute decision making in a fuzzy environment. Fuzzy multiple attribute decisions involve two processes, the rating and the ranking of alternatives. If the rating results are crisp then the ranking procedure becomes straightforward; hence, the emphasis of this paper is on obtaining crisp ratings for alternatives. In order to aid the decision maker to express his/her attribute preferences, new elicitation techniques to determine attributes importance are proposed. These techniques range from statistical to scaling methods based on linguistic variables, and so enable a more versatile elicitation procedure as well as providing crisp preferences.

90C70Fuzzy programming
90C29Multi-objective programming; goal programming
91B06Decision theory
Full Text: DOI
[1] Alreck, P. L.; Settle, R. B.: The survey research handbook. (1985)
[2] Baas, S.; Kwakernaak, H.: Rating and raking of multiple-aspect alternatives using fuzzy sets. Automatica 13, 47-58 (1977) · Zbl 0363.90010
[3] J.F. Baldwin, Evidential support logic, FRIL and case based reasoning, to appear in Internat. J. Intelligent Systems. · Zbl 0942.68724
[4] Baldwin, J. F.: FRIL-fuzzy and evidential reasoning in AI. (1994)
[5] Baldwin, J. F.; Guild, N. C. F.: Comparison of fuzzy sets on the same decision space. Fuzzy sets and systems 2, 213-231 (1979) · Zbl 0422.90004
[6] Baldwin, J. F.; Martin, T.; Pilsworth, B.: FRIL manual. (1988)
[7] Baldwin, J. F.; Ribeiro, R. A.: Fuzzy reasoning by case for decision support systems. Uncertainty fuzziness knowledge-based systems 2, No. 1 (1994) · Zbl 1232.68124
[8] Bellman, R. E.; Zadeh, L. A.: Decision-making in a fuzzy environment. Management sci. 17, No. 4, 141-164 (1970) · Zbl 0224.90032
[9] Daellenbach, H. G.; George, J. A.; Mcnickle, D. C.: Introduction to operations research techniques. (1983)
[10] Dong, W. M.; Shah, H. C.; Wong, F. S.: Fuzzy computations in risk and decision analysis. Civil engrg. Systems 2, 201-208 (1985)
[11] Dong, W. M.; Wong, F. S.: Fuzzy weighted averages and implementation of the extension principle. Fuzzy sets and systems 21, 183-199 (1987) · Zbl 0611.65100
[12] Dubois, D.: Ranking fuzzy numbers in the setting of possibility theory. Inform. sci. 30, 183-224 (1983) · Zbl 0569.94031
[13] Dubois, D.; Prade, H.: Fuzzy real algebra: some results. Fuzzy sets and systems 2, 327-348 (1979) · Zbl 0412.03035
[14] Dubois, D.; Prade, H.: Fuzzy sets and systems: theory and applications. (1980) · Zbl 0444.94049
[15] Jain, R.: Decision making in the presence of fuzzy variables. IEEE trans. Systems man cybernet., 698-702 (October 1976)
[16] Kahne, S.: A procedure for optimising development decisions. Automatica 11, 261-269 (1975)
[17] Keeney, R. L.; Raiffa, H.: Decisions with multiple objectives: preferences and value trade-offs. (1976) · Zbl 0488.90001
[18] Kolodner, J. L.: Improving human decision making through case-based decision aiding. AI mag. 12, 52-68 (1991)
[19] Laarhoven, P. J. M.; Pedrycz, W.: A fuzzy extension of saaty’s priority theory. Fuzzy sets and systems 11, 229-241 (1983) · Zbl 0528.90054
[20] Maccrimmon, K. R.: An overview of multiple objective decision making. Multiple criteria decision making (1973)
[21] Ribeiro, R. A.; Powell, P.; Baldwin, J. F.: Uncertainty in decision making: an abductive perspective. Decision support systems 13, 183-193 (1995)
[22] Saaty, T. L.: Measuring the fuzziness of sets. J. cybernet. 4, No. 4, 53-61 (1974) · Zbl 0319.02060
[23] Saaty, T. L.: Exploring the interface between hierarchies, multiple objectives and fuzzy sets. Fuzzy sets and systems 1, 57-68 (1978) · Zbl 0378.94001
[24] Saaty, T. L.: Modelling unstructured decision problems -- the theory of analytical hierarchies. Math. comput. Simulation 20, 147-158 (1978) · Zbl 0386.90001
[25] Starr, M. K.; Zeleny, M.: MCDM -- state and future of the arts. TIMS stud. Management sci. 6, 5-29 (1977)
[26] Tong, R. M.; Bonissone, P. P.: A linguistic approach to decision making with fuzzy sets. IEEE trans. Systems man cybernet. 10, No. 11, 716-723 (1980)
[27] Tseng, T. Y.; Klein, C. M.: A new algorithm for fuzzy multicriteria decision making. Internat. J. Approx. reason. 6, 45-66 (1992) · Zbl 0749.90089
[28] Tseng, T. -Y.; Klein, C. M.: A survey and comparative study of ranking procedures in fuzzy decision making. Report (1994)
[29] Turban, E.: Decision support and expert systems. (1988) · Zbl 0853.68144
[30] Tversky, A.; Kahneman, D.: Judgement under uncertainty: heuristics and biases. Readings in uncertain reasoning, 32-39 (1990)
[31] Waltz, D. L.: Memory-based reasoning. Natural and artificial parallel computation (1990)
[32] Yager, R. R.: Decision making with fuzzy sets. Decision sci. 6, No. 3, 590-600 (1975)
[33] Yager, R. R.: Multiple objective decision-making using fuzzy sets. Internat. J. Man-machine stud. 9, 375-382 (1977) · Zbl 0371.90005
[34] Yager, R. R.: Fuzzy decision making including unequal objectives. Fuzzy sets and systems 1, 87-95 (1978) · Zbl 0378.90011
[35] Yager, R. R.: A new methodology for ordinal multiobjective decisions based on fuzzy sets. Decision sci. 12, 589-600 (1981)
[36] Yager, R. R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE trans. Systems man cybernet. 18, No. 1, 183-190 (1988) · Zbl 0637.90057
[37] Zadeh, L. A.: Outline of a new approach to the analysis of complex systems and decision process. IEEE trans. Systems man cybernet. 3, No. 1, 28-44 (1973) · Zbl 0273.93002
[38] Zimmermann, H. -J.: Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems 1, 45-55 (1978) · Zbl 0364.90065
[39] Zimmermann, H. -J.: Fuzzy sets theory -- and its applications. International series in management science/operations (1986)
[40] Zimmermann, H. -J.: Fuzzy sets, decision making, an expert systems. International series in management science/operations research (1987)