zbMATH — the first resource for mathematics

On integral Witt equivalence of algebraic number fields. (English) Zbl 0870.11022
The paper deals with the Witt equivalence and EOP-Hilbert-symbol equivalence of two algebraic number fields. The integral Witt equivalence and the complete classification of quadratic number fields are included, too. The proofs use the so-called Harrison criterion.
Reviewer: J.Hančl (Ostrava)

11E81 Algebraic theory of quadratic forms; Witt groups and rings
11E12 Quadratic forms over global rings and fields
Full Text: EuDML
[1] Carpenter J. P.: Finiteness theorems for forms over global fields. Math. Zeit. 209 (1992), 153-166. · Zbl 0724.11021 · doi:10.1007/BF02570827 · eudml:174357
[2] Conner P. E., Pedis R., Szymiczek K.: Wild sets and 2-ranks of class groups. Acta Arith.) · Zbl 0880.11039 · eudml:206968
[3] Czogala A.: On reciprocity equivalence of quadratic number fields. Acta arith. 58 (1991), 365-387. · Zbl 0733.11012 · eudml:206333
[4] Milnor J., Husemoller D.: Symmetric Billinear Forms. Springer Verlag, Berlin, 1973. · Zbl 0292.10016
[5] Münstermann R.: Der Wittring des Ring der ganzen Zahlen eines Quadratischen Zahlkorpers. Diplomarbeit, Bielefeld, 1983.
[6] Perlis R., Szymiczek K., Conner P., Litherland R.: Matching Witts with global fields. Contemp. Math. 155 (1994), 365-387. · Zbl 0807.11024 · doi:10.1090/conm/155/01393
[7] Shastri P.: Witt groups of algebraic integers. J. of Number Theory 30 (1988), 243-266. · Zbl 0651.10014 · doi:10.1016/0022-314X(88)90001-7
[8] Szymiczek K.: Matching Witts locally and globally. Math. Slovaca 41 (1991), 315-330. · Zbl 0766.11023 · eudml:32408
[9] Szymiczek K.: Hilbert-symbol equivalence of number fields. Tatra Mount. Math. Publ., 11 · Zbl 0978.11012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.