# zbMATH — the first resource for mathematics

On approximation by Lüroth series. (English) Zbl 0870.11039
It is well-known that each $$x\in(0,1]$$ can be expressed in the form of its Lüroth expansion $x= \frac{1}{a_1}+ \frac{1}{v_1a_1}+\cdots+ \frac{1}{v_na_{n+1}}+\cdots,$ where $$a_n\geq 2$$ $$(n=1,2,\dots)$$ are integers and $$v_n=a_1(a_1-1)\dots a_n(a_n-1)$$ $$(n=1,2,\dots)$$ [cf. J. Galambos, Representations of real numbers by infinite series, Lect. Notes Math. 502, 66-69 (1976; Zbl 0322.10002)]. Put $$p_n/q_n= 1/a_1+ \sum_{k=1}^{n-1} (1/v_ka_{k+1})$$ $$(n=1,2,\dots)$$. H. Jager and C. de Vroedt [Nederl. Akad. Wet., Proc., Ser. A 72, 31-42 (1969; Zbl 0167.32201)] proved some fundamental results about the stochastic variables $$a_i= a_i(x)$$ $$(i=1,2,\dots)$$.
In this paper these results are extended to the study of functions $\vartheta_n= \vartheta_n(x)= q_n/\bigl|x-{\textstyle{\frac{p_n}{q_n}}} \bigr|\qquad (n=1,2,\dots).$ It is proved here that if $$t\in (0,1]$$ then for almost all $$x$$ we have $\lim_{N\to\infty} \frac{1}{N}\bigl|\{j\leq N: \vartheta_j(x)<t\}\bigr|= F(t),\quad \text{where}\quad F(t)= \sum_{k=2}^{[\frac{1}{t}]+1} \frac{t}{k}+ \frac{1}{[\frac{1}{t}]+1}$ and $$|M|$$ denotes the number of elements of $$M$$. Several metric results are obtained concerning the functions $$(\vartheta_n, \vartheta_{n+1})$$, $$\vartheta_n+\vartheta_{n+1}$$ and $$\vartheta_n< \vartheta_{n+1}$$. The correlation coefficient for the correlation between $$\vartheta_n$$ and $$\vartheta_{n+1}$$ is given, as well.

##### MSC:
 11J70 Continued fractions and generalizations 11K55 Metric theory of other algorithms and expansions; measure and Hausdorff dimension
##### Keywords:
Lüroth expansion; metric results; correlation coefficient
Full Text:
##### References:
  Barrionuevo, Jose, Burton, Robert M., Dajani, Karma and Kraaikamp, Cor - Ergodic Properties of Generalized Lüroth Series, Acta Arithm., LXXIV (4) (1996), 311-327. · Zbl 0848.11039  Dajani, Karma, Kraaikamp, Cor and Solomyak, Boris - The natural extension of the β-transformation, Acta Math. Hungar., 73 (1-2) (1996), 97-109. · Zbl 0931.28014  Galambos, J. - Representations of Real numbers by Infinite Series, 502, Springer-Verlag, Berlin, Heidelberg, New York, 1976. · Zbl 0322.10002  Jager, H. and Kraaikamp, C. - On the approximation by continued fractions, Indag. Math., 51 (1989), 289-307. · Zbl 0695.10029  Jager, H. and de Vroedt, C. - Lüroth series and their ergodic properties, Indag. Math.31 (1968), 31-42. · Zbl 0167.32201  Lüroth, J. - Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe, Math. Annalen21 (1883), 411-423. · JFM 15.0187.01  Nolte, Vincent N. - Some probabilistic results on continued fractions, Doktoraal scriptie Universiteit van Amsterdam, Amsterdam, August 1989.  Perron, O. - Irrationalzahlen, Walter de Gruyter & Co., Berlin, 1960. · Zbl 0090.03202  Tucker, H.G. - A Graduate Course in Probability, Academic Press, New York, 1967. · Zbl 0159.45702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.