On meet matrices on posets. (English) Zbl 0870.15016

The author considers the meet matrices on posets as a generalization of the greatest common divisor (GCD) matrices. Some of the most important properties of GCD matrices are expressed in the language of meet matrices. The author proves a structure theorem for meet matrices, derives explicit expressions and bounds for the determinants of meet matrices, and finally considers the inverse of meet matrices.


15B57 Hermitian, skew-Hermitian, and related matrices
11C20 Matrices, determinants in number theory
15A15 Determinants, permanents, traces, other special matrix functions
15A09 Theory of matrix inversion and generalized inverses
Full Text: DOI


[1] Beslin, S.; Ligh, S., Greatest common divisor matrices, Linear Algebra Appl., 118, 69-76 (1989) · Zbl 0672.15005
[2] Beslin, S.; Ligh, S., Another generalisation of Smith’s determinant, Bull. Austral. Math. Soc., 40, 413-415 (1989) · Zbl 0675.10002
[3] Beslin, S.; Ligh, S., GCD-closed sets and the determinants of GCD matrices, Fibonacci Quart, 30, 157-160 (1992) · Zbl 0752.11012
[4] Bourque, K.; Ligh, S., On GCD and LCM matrices, Linear Algebra Appl., 174, 65-74 (1992) · Zbl 0761.15013
[5] Bourque, K.; Ligh, S., Matrices associated with classes of arithmetical functions, J. Number Theory, 45, 367-376 (1993) · Zbl 0784.11002
[6] Bourque, K.; Ligh, S., Matrices associated with arithmetical functions, Linear and Multilinear Algebra, 34, 261-267 (1993) · Zbl 0815.15022
[7] Gantmacher, F. R., (Matrix Theory, Vol. I (1977), Chelsea: Chelsea New York)
[8] Haukkanen, P., Classical arithmetical identities involving a generalization of Ramanujan’s sum, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 68, 1-69 (1988) · Zbl 0651.10005
[10] Li, Z., The determinants of GCD matrices, Linear Algebra Appl., 134, 137-143 (1990) · Zbl 0703.15012
[11] Lindström, B., Determinants on semilattices, (Proc. Amer. Math. Soc., 20 (1969)), 207-208 · Zbl 0165.02902
[12] Mirsky, L., An Introduction to Linear Algebra (1972), Oxford U.P: Oxford U.P London · Zbl 0766.15001
[13] Pólya, G.; Szegö, G., (Aufgaben und Lehrsätze aus der Analysis, Vol. II (1971), Springer-Verlag: Springer-Verlag New York) · Zbl 0219.00003
[14] Rajarama Bhat, B. V., On greatest common divisor matrices and their applications, Linear Algebra Appl., 158, 77-97 (1991) · Zbl 0754.15012
[15] Smith, D. A., Bivariate function algebras on posets, J. Reine Angew. Math., 251, 100-109 (1971) · Zbl 0224.06002
[16] Smith, H. J.S., On the value of a certain arithmetical determinant, (Proc. London Math. Soc., 7 (1875-1876)), 208-212 · JFM 08.0074.03
[17] Stanley, R. P., (Enumerative Combinatorics, Vol. I (1986), Wadsworth and Brooks/Cole: Wadsworth and Brooks/Cole Monterey, Calif) · Zbl 0608.05001
[18] Wilf, H. S., Hadamard determinants, Möbius functions, and the chromatic number of a graph, Bull. Amer. Math. Soc., 74, 960-964 (1968) · Zbl 0172.01602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.