Nebe, Gabriele Finite subgroups of \(\text{GL}_{24}(\mathbb{Q})\). (English) Zbl 0870.20029 Exp. Math. 5, No. 3, 163-195 (1996). The author provides a full list of maximal finite irreducible subgroups \(G\) of \(\text{GL}(n,\mathbb{Z})\) together with their \(G\)-lattices of minimal determinant. The information given is very precise, and contains such parameters as the determinant of the lattice and the number of vectors of minimal length. A \(G\)-invariant quadratic form is given for every primitive group \(G\). Reviewer: A.E.Zalesskij (Norwich) Cited in 8 Documents MSC: 20G20 Linear algebraic groups over the reals, the complexes, the quaternions 11E57 Classical groups 11H56 Automorphism groups of lattices 20C10 Integral representations of finite groups 20E28 Maximal subgroups 20H15 Other geometric groups, including crystallographic groups 20E07 Subgroup theorems; subgroup growth Keywords:finite rational linear groups; integral lattices; lattices of minimal determinant; maximal finite irreducible subgroups; vectors of minimal length; primitive groups Software:GAP × Cite Format Result Cite Review PDF Full Text: DOI EuDML EMIS References: [1] DOI: 10.1007/BF02566364 · Zbl 0558.10029 · doi:10.1007/BF02566364 [2] DOI: 10.1016/0022-314X(85)90023-X · Zbl 0593.16005 · doi:10.1016/0022-314X(85)90023-X [3] Buser P., L’enseignement mathématique 31 pp 137– (1985) [4] Cannon J. J., Computational Group Theory pp 145– (1984) [5] Conway J. H., Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups (1985) · Zbl 0568.20001 [6] Conway J. H., Sphere Packings, Lattices and Groups,, 2. ed. (1993) · doi:10.1007/978-1-4757-2249-9 [7] DeMeyer F., Memoirs Amer. Math. Soc. 77 (394) (1989) · doi:10.1090/memo/0394 [8] DOI: 10.1112/plms/s3-29.4.633 · Zbl 0312.20003 · doi:10.1112/plms/s3-29.4.633 [9] Schönert M., GAP: Groups, Algorithms, and Programming (1994) [10] Hasse H., Zahlentheorie,, 2. ed. (1963) [11] Holt D. F., Perfect Groups (1989) [12] DOI: 10.1007/978-3-642-64981-3 · Zbl 0217.07201 · doi:10.1007/978-3-642-64981-3 [13] Jansen C., An Atlas of Brauer Characters (1995) · Zbl 0831.20001 [14] Pohst M., Computeralgebra in Deutschland pp 212– (1993) [15] Lang S., Algebraic Number Theory (1970) · Zbl 0211.38404 [16] DOI: 10.1016/0021-8693(74)90150-1 · Zbl 0325.20008 · doi:10.1016/0021-8693(74)90150-1 [17] Nebe G., Dissertation, in: ”Endliche rationale Matrixgruppen vom Grad 24” (1995) · Zbl 0837.20057 [18] Nebe G., Memoirs Amer. Math. Soc. 116 (556) (1995) [19] O’Meara O. T., Introduction to Quadratic Forms (1973) [20] DOI: 10.1090/S0025-5718-1984-0758205-5 · Zbl 0562.10012 · doi:10.1090/S0025-5718-1984-0758205-5 [21] DOI: 10.1016/0021-8693(85)90086-9 · Zbl 0583.20036 · doi:10.1016/0021-8693(85)90086-9 [22] DOI: 10.1007/978-3-0348-8658-1_22 · doi:10.1007/978-3-0348-8658-1_22 [23] Plesken W., Memoirs Amer. Math. Soc. 116 (556) (1995) [24] DOI: 10.1090/S0025-5718-1985-0790654-2 · Zbl 0581.10014 · doi:10.1090/S0025-5718-1985-0790654-2 [25] Plesken W., ”Computing isometries of lattices” · Zbl 0882.11042 · doi:10.1006/jsco.1996.0130 [26] Reiner I., Maximal Orders (1975) [27] Schur I., Gesammelte Abhandlungen pp 128– (1973) · Zbl 0274.01054 · doi:10.1007/978-3-642-61947-2_6 [28] DOI: 10.1006/jabr.1993.1132 · Zbl 0789.20014 · doi:10.1006/jabr.1993.1132 [29] Souvignier B., Math. Comp. 63 pp 335– (1994) [30] Srinivasan B., Trans. Amer. Math. Soc. 131 pp 488– (1968) [31] DOI: 10.1007/978-1-4684-0133-2 · doi:10.1007/978-1-4684-0133-2 [32] DOI: 10.1112/plms/s3-12.1.577 · Zbl 0107.26901 · doi:10.1112/plms/s3-12.1.577 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.