zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Approximation order provided by refinable function vectors. (English) Zbl 0870.41015
Summary: In this paper we consider $L_p$-approximation by integer translates of a finite set of functions $\varphi_\nu$ $(\nu=0, \dots, r-1)$ which are not necessarily compactly supported, but have a suitable decay rate. Assuming that the function vector $\varphi= (\varphi_\nu)^{r-1}_{\nu=0}$ is refinable, necessary and sufficient conditions for the refinement mask are derived. In particular, if algebraic polynomials can be exactly reproduced by integer translates of $\varphi_\nu$, then a factorization of the refinement mask of $\varphi$ can be given. This result is a natural generalization of the result for a single function $\varphi$, where the refinement mask of $\varphi$ contains the factor $((1+e^{-iu})/2)^m$ if approximation order $m$ is achieved.

41A25Rate of convergence, degree of approximation
41A30Approximation by other special function classes
42A99Fourier analysis in one variable
46C99Inner product spaces, Hilbert spaces
Full Text: DOI
[1] B. K. Alpert (1993):A class of bases in L 2 for the sparse representation of integral operators. SIAM J. Math. Anal.,24:246--262. · doi:10.1137/0524016
[2] C. de Boor, R. A. DeVore, A. Ron (1994):Approximation from shift-invariant subspaces of L 2(d). Trans. Amer. Math. Soc.,341:787--806. · Zbl 0790.41012
[3] C. de Boork, R. A. DeVore, A. Ron (1994):The structure of finitely generated shift-invariant spaces in L 2(d). J. Funct. Anal.,119(1):37--78. · Zbl 0806.46030 · doi:10.1006/jfan.1994.1003
[4] P. L. Butzer, R. J. Nessel (1971): Fourier Analysis and Approximation. Basel: Birkhäuser Verlag. · Zbl 0217.42603
[5] A. Cavaretta, W. Dahmen, C. A. Micchelli (1991):Stationary subdivision. Mem. Amer. Math.Soc.,453:1--186. · Zbl 0741.41009
[6] C. K. Chui (1992): An Introduction to Wavelets. Boston: Academic Press. · Zbl 0925.42016
[7] I. Daubechies (1988):Orthonormal bases of wavelets with compact support. Pure Appl. Math.,41:909--996. · Zbl 0644.42026 · doi:10.1002/cpa.3160410705
[8] I. Daubechies (1992): Ten Lectures on Wavelets. Philadelphia, PA, SIAM. · Zbl 0776.42018
[9] I. Daubechies, J. Lagarias (1992):Two-scale difference equations: II. Local regularity, infinite products of matrices and fractals. SIAM J. Math. Anal.23:1031--1079. · Zbl 0788.42013 · doi:10.1137/0523059
[10] G. Donovan, J. S. Geronimo, D. P. Hardin, P. R. Massopust (to appear):Construction of orthogonal wavelets using fractal interpolation functions. SIAM J. Math. Anal.
[11] N. Dyn, I. R. H. Jackson, D. Levin, A. Ron (1992):On multivariate approximation by the integer translates of a basis function. Israel J. Math.,78:95--130. · Zbl 0769.41008 · doi:10.1007/BF02801574
[12] T. N. T. Goodman, S. L. Lee (1994): Wavelets of Multiplicityr. Trans. Amer. Math. Soc.342:307--324. · Zbl 0799.41013
[13] T. N. T. Goodman, S. L. Lee, W. S. Tang (1993):Wavelets in wandering subspaces. Trans. Amer. Math. Soc.,338:639--654. · Zbl 0777.41011 · doi:10.1090/S0002-9947-1993-1117215-0
[14] E. J. Halton, W. A. Light (1993):On local and controlled approximation order. J. Approx. Theory,72:268--277. · Zbl 0789.41011 · doi:10.1006/jath.1993.1021
[15] C. Heil, G. Strang, V. Strela (to appear):Approximation by translates of refinable functions. Numer. Math.
[16] L. Hervé (1994):Multi-resolution analysis of multiplicity d. Application to dyadic interpolation. Appl. Comput. Harmonic Anal.,1:299--315. · Zbl 0814.42017 · doi:10.1006/acha.1994.1017
[17] R.-Q. Jia, J. J. Lei (1993):Approximation by multi-integer translates of functions having global support. J. Approx. Theory,72:2--23. · Zbl 0778.41016 · doi:10.1006/jath.1993.1002
[18] P. G. Lemarié-Rieusset (1993):Ondelettes généralisées et fonctions déchelle à support compact. Rev. Mat. Iberoamer.9:333--371. · doi:10.4171/RMI/140
[19] W. A. Light (1991):Recent developments in the Strang-Fix theory for approximation orders. In: Curves and Surfaces (P. J. Laurent, A. le Méhauté, L. L. Schumaker, eds.). New York: Academic Press, pp. 297--306. · Zbl 0736.41023
[20] G. Plonka (1995):Two-scale symbol and autocorrelation symbol for B-splines with multiple knots. Adv. in Comput. Math.,3:1--22. · Zbl 0828.41007 · doi:10.1007/BF02431993
[21] G. Plonka (to appear):Generalized spline wavelets. Constr. Approx.
[22] I. J. Schoenberg (1946):Contributions to the problem of approximation of equidistant data by analytic functions, part A. Quart. Appl. Math.,4:45--99. · Zbl 0061.28804
[23] I. J. Schoenberg (1972):Cardinal Interpolation and spline functions: II. Interpolation of data of power growth. J Approx. Theory,6:404--420. · Zbl 0268.41004 · doi:10.1016/0021-9045(72)90048-2
[24] G. Strang, G. Fix (1973):A Fourier analysis of the finite element variational method. In: Constructive Aspects of Functional Analysis (G. Geymonat, ed.). C.I.M.E., pp. 793--840. · Zbl 0278.65116
[25] G. Strang, V. Strela (1994):Orthogonal multiwavelets with vanishing moments. J Opt. Engrg.,33:2104--2107. · doi:10.1117/12.172247
[26] G. Strang, V. Strela (1995):Short wavelets and matrix dilation equations. IEEE Trans. SP,43:108--115. · doi:10.1109/78.365291