zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A level-set approach for inverse problems involving obstacles. (English) Zbl 0870.49016
Summary: An approach for solving inverse problems involving obstacles is proposed. The approach uses a level-set method which has been shown to be effective in treating problems of moving boundaries, particularly those that involve topological changes in the geometry. We develop two computational methods based on this idea. One method results in a nonlinear time-dependent partial differential equation for the level-set function whose evolution minimizes the residual in the data fit. The second method is an optimization that generates a sequence of level-set functions that reduces the residual. The methods are illustrated in two applications : a deconvolution problem and a diffraction screen reconstruction problem.

49L20Dynamic programming method (infinite-dimensional problems)
Full Text: DOI Link EuDML
[1] MATLAB: High-performance numeric computation and visualization software - Refrence guide, MathWorks, Natick, MA, 1992.
[2] V. Casselles, F. CattĂ©, T. Coll, and F. Dibos: A geometric model for active contours in image processing, Numerische Mathematik, 66, 1993, 1-31. Zbl0804.68159 MR1240700 · Zbl 0804.68159 · doi:10.1007/BF01385685 · eudml:133750
[3] D. Colton and R. Kress: Inverse acoustic and electromagnetic scattering theory, Springer-Verlag, Berlin, 1992. Zbl0760.35053 MR1183732 · Zbl 0760.35053
[4] J. Dennis and R. Schnabel: Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Englewood Cliffs, 1983. Zbl0579.65058 MR702023 · Zbl 0579.65058
[5] A. Friedman: Detection of mines by electric measurements, SIAM J. Appl Math., 47, 1987, 201-212. Zbl0636.35084 MR873244 · Zbl 0636.35084 · doi:10.1137/0147012
[6] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum and A. Yezzi: Gradient flows and geometric active contour models, Proc. ICCV, Cambridge, 1995.
[7] R. LeVeque and Z. Li: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM ,L Num, Analysis, 31, 1994, 1019-1044. Zbl0811.65083 MR1286215 · Zbl 0811.65083 · doi:10.1137/0731054
[8] R. Magnanini and G. Papi: An inverse problem for the helmholtz equation, Inverse Problems, 1, 1985, 357-370. Zbl0608.35076 MR824135 · Zbl 0608.35076 · doi:10.1088/0266-5611/1/4/007
[9] R. Malladi, J. Sethian, and B. Vemuri: Shape modeling with front propagation: a level set approach, IEEE Trans. Pattern Anal. Machine Intell., 17, 1995, 158-175.
[10] S. Osher and J. Sethian: Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 56, 1988, 12-49. Zbl0659.65132 MR965860 · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[11] M. Sondhi: Reconstruction of objects from their sound-diffraction patterns, J. Acoust. Soc. Am., 46, 1969, 1158-1164.