×

zbMATH — the first resource for mathematics

Stochastic flows for nonlinear second-order parabolic SPDE. (English) Zbl 0870.60056
The author proves the existence of stochastic flows in \(L^2\) for a reaction-diffusion equation of second order in a bounded domain.

MSC:
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H25 Random operators and equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] BRZEZNIAK, Z., CAPINSKI, M. and FLANDOLI, F. 1992. Stochastic Navier]Stokes equations with multiplicative noise. Stochastic Anal. Appl. 10 523]532. w x. · Zbl 0762.35083 · doi:10.1080/07362999208809288
[2] BRZEZNIAK, Z. and FLANDOLI, F. 1992. Regularity of solutions and random evolution operator for stochastic parabolic equations. In Stochastic Partial Differential Equa. tions and Applications. G. Da Prato and L. Tubaro, eds. 54]71. Pitman, Harlow. w x. 3 DA PRATO, G. and ZABCZy K, J. 1992. Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press. w x. · Zbl 0797.60048
[3] FLANDOLI, F. 1991. Stochastic flows and Ly apunov exponents for abstract stochastic PDEs of parabolic ty pe. Ly apunov Exponents. Lecture Notes in Math. 1486 196]205. Springer, New York. w x. · Zbl 0746.60066 · doi:10.1007/BFb0086669
[4] FLANDOLI, F. 1995. Regularity Theory and Stochastic Flows for Parabolic SPDE’s. Gordon and Breach, Amsterdam. w x. · Zbl 0838.60054
[5] FLANDOLI, F. and SCHAUMLFFEL, K.-U. 1990. Stochastic parabolic equations in bounded domains: random evolution operators and Ly apunov exponents. Stochastics Stochastic Rep. 29 461]485. w x. · Zbl 0704.60060
[6] IKEDA, N. and WATANABE, S. 1981. Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam. w x. · Zbl 0495.60005
[7] KRy LOV, N. V. and ROZOVSKII, B. L. 1981. Stochastic evolution equations. J. Soviet Math. 16 1233]1277. w x.
[8] KUNITA, H. 1990. Stochastic Flows and Stochastic Differential Equations. Cambridge Univ. Press. w x. · Zbl 0743.60052
[9] PARDOUX, E. 1975. Equations aux derivee partielles stochastiques non lineaires mono\' ťones. Thesis, Dept. Mathematics, Univ. Paris XI. w x.
[10] ROZOVSKI, B. L. and SHIMIZU, A. 1981. Smoothness of solutions of stochastic evolution equations and the existence of a filtering transition density. Nagoy a Math. J. 84 195]208. w x. · Zbl 0478.60048
[11] SCHAUMLFFEL, K.-U. and FLANDOLI, F. 1991. A multiplicative ergodic theorem with applications to a first order stochastic hy perbolic equation in a bounded domain. Stochastics Stochastic Rep. 34 241]255. w x. · Zbl 0724.60072 · doi:10.1080/17442509108833684
[12] SKOROHOD, A. V. 1984. Random Linear Operators. Reidel, Dordrecht. w x.
[13] TUBARO, L. 1988. Some results on stochastic partial differential equations by the stochastic characteristic method. Stochastic Anal. Appl. 6 217]230. · Zbl 0647.60070 · doi:10.1080/07362998808809144
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.