×

Decreasing sequences of \(\sigma\)-fields and a measure change for Brownian motion. I. (English) Zbl 0870.60078

The authors give a negative answer to the following question [originally raised by D. W. Stroock and M. Yor, Ann. Sci. Éc. Norm. Super., IV. Sér. 13, 95-164 (1980; Zbl 0447.60034)]. Let \((\Omega,{\mathfrak F},\mathbb{P},\{B(t)\}_{t\geq 0},\{{\mathfrak F}_t\}_{t\geq 0})\) be a real Brownian motion and \(\mathbb{Q}\) any equivalent probability measure w.r.t. \(\mathbb{P}\). Does there always exist a Brownian motion \((\Omega,{\mathfrak F},\mathbb{Q},\{B'(t)\}_{t\geq 0},\{{\mathfrak F}_t'\}_{t\geq 0})\) such that \({\mathfrak F}_t'={\mathfrak F}_t\)? (If only \({\mathfrak F}_t'\subset{\mathfrak F}_t\) were required, the above question would have an affirmative answer in Girsanov’s theorem.)
The construction of the counterexample relies essentially on the following theorem on reverse filtrations \(\{{\mathfrak F}_n\}_{n\in\mathbb{N}}\), i.e., decreasing sequences of sub-\(\sigma\)-fields \(\{{\mathfrak F}_n\}_{n\in\mathbb{N}}\): There exists a measure \(m\) equivalent to the Bernoulli product measure \(\lambda\) on \(\{0,1\}^{\mathbb{N}}\) such that \((\{0,1\}^{\mathbb{N}},\{{\mathfrak F}_n\}_{n\in\mathbb{N}},m)\) admits no standard extension. Here, a standard extension is another triple \((\widetilde{\mathcal H},\{\widetilde{\mathfrak F}_n\}_{n\in\mathbb{N}},\widetilde m)\) such that (a) \(\widetilde{\mathfrak F}_n=\sigma(\widetilde X_k, k\geq n)\) is generated by independent random variables \(\{\widetilde X_n\}_{n\in\mathbb{N}}\) (standardness), (b) there is a measure preserving map \(\pi:\widetilde{\mathcal H}\to\{0,1\}^{\mathbb{N}}\) such that \(\pi^{-1}({\mathfrak F}_n)\subset\widetilde{\mathfrak F}_n\) and (c) \(\widetilde{\mathbb{E}}(X\circ\pi\mid \widetilde{\mathfrak F}_n)= \mathbb{E}(X\mid{\mathfrak F}_n)\circ\pi\) for all bounded real-valued random variables \(X\) on \(\{0,1\}^{\mathbb{N}}\). The measure \(m\) is explicitly constructed on the coordinate functions \(\{X_n\}_{n\in\mathbb{N}}\) of \(\{0,1\}^{\mathbb{N}}\) (taken as random variables) by means of its conditional probabilities, \(m(X_n=1\mid X_k,\;k\geq n+1)=(1\pm\delta_n)/2\), \(\delta_n\in (0,1)\). In order to prove standardness, A. M. Vershik’s criterion for standardness [Sov. Math., Dokl. 11, 1007-1011 (1970); translation from Dokl. Akad. Nauk SSSR 193, 748-751 (1970; Zbl 0238.28011)] is being used.
In the situation of the above question, the counterexample for \(\mathbb{Q}\) is now given by the following construction: Choose a strictly decreasing sequence of positive numbers \(t_n\to 0\) and put \(X_n:=\text{\textbf{1}}_{(0,\infty)}(B(t_n)-B(t_{n+1}))\) and \(\pi:\Omega\ni\omega\to (X_1(\omega),X_2(\omega),\dots)\). The measure \(\mathbb{Q}\) is given by \({d\mathbb{Q}\over d\mathbb{P}}:= {dm\over d\lambda}\circ\pi\) and it can be seen that \((\Omega, \{\sigma(B(s), s\leq t_n)\}_{n\in\mathbb{N}}, \mathbb{Q})\) and \(\pi\) extend \((\{0,1\}^{\mathbb{N}}, \{\sigma(X_k, k\geq n)\}_{n\in\mathbb{N}}, m)\). By the above theorem, this extension cannot be standard, i.e. \(\sigma(B_s, s\leq t_n)\) cannot be generated by independent random variables, in particular not by another Brownian motion. [For part II see below].

MSC:

60J65 Brownian motion
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
60G07 General theory of stochastic processes
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DUDLEY, R. M. 1989. Real Analy sis and Probability. Wadsworth and Brooks Cole, Pacific Grove, CA. Z.
[2] GETOOR, R. and SHARPE, M. 1972. Conformal martingales. Invent. Math. 16 271 308. Z. · Zbl 0268.60048 · doi:10.1007/BF01425714
[3] IKEDA, N. and WATANABE, S. 1989. Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland, Amsterdam Kodansha, Toky o. Z. () · Zbl 0684.60040
[4] KAKUTANI, S. 1948. On equivalence of infinite product measures. Ann. of Math. 2 49 214 224. Z. JSTOR: · Zbl 0030.02303 · doi:10.2307/1969123
[5] KANTOROVICH, L. V. and RUBINSTEIN, G. S. 1958. On space of completely additive functions. Z. Vestnik Leningrad Univ. 7 52 59. In Russian. Z. · Zbl 0082.11001
[6] PROTTER, P. 1990. Stochastic Integration and Differential Equations. Springer, Berlin. Z. · Zbl 0694.60047
[7] REVUZ, D. and YOR, M. 1991. Continuous Martingales and Brownian Motion. Springer, Berlin. Z. · Zbl 0731.60002
[8] ROGERS, L. C. G. and WILLIAMS, D. 1987. Diffusions, Markov Processes, and Martingales 2. Ito Calculus. Wiley, New York. Z. Z. · Zbl 0977.60005
[9] ROKHLIN, V. A. 1949. Main notions of measure theory. Mat. Sb. 67 107 150. In Russian. Z.
[10] SKOROKHOD, A. V. 1986. Random processes in infinite dimensional spaces. Proc. Internat. Cong. Z. Z. Math. A. M. Gleason, ed. 163 171. Amer. Math. Soc., Providence, RI. In Russian. Z. · Zbl 0668.60057
[11] SMORODINSKY, M. 1995. An example of a nonstandard inverse filtration.
[12] DUBINS, FELDMAN, SMORODINSKY AND TSIRELSON 904
[13] STROOCK, D. W. and YOR, M. 1980. On extremal solutions of martingale problems. Ann. Sci. \' () Ecole Norm. Sup. 4 13 95 164. Z. · Zbl 0447.60034
[14] TSIRELSON, B. S. 1975. An example of a stochastic differential equation having no strong solution. Theory Probab. Appl. 20 416 418. Z. · Zbl 0353.60061 · doi:10.1137/1120049
[15] VERSHIK, A. M. 1968. A theorem on lacunary isomorphisms. Functional Anal. Appl. 2 200 203. Z. · Zbl 0186.20203
[16] VERSHIK, A. M. 1970. Decreasing sequences of measurable partitions, and their applications. Soviet Math. Dokl. 11 1007 1011. Z. · Zbl 0238.28011
[17] VERSHIK, A. M. 1971. A continuum of pairwise nonisomorphic dy adic sequences. Functional Anal. Appl. 5 16 18. Z. Z · Zbl 0244.28009
[18] VERSHIK, A. M. 1973. Approximation in measure theory. Dissertation, Leningrad Univ. In. Russian. Z.
[19] VERSHIK, A. M. 1994. The theory of decreasing sequences of measurable partitions. St. Petersburg Math. J. 6 705 761. · Zbl 0853.28009
[20] BERKELEY, CALIFORNIA 94720 TEL AVIV 69978 E-MAIL: dubins@stat.berkeley.edu ISRAEL feldman@math.berkeley.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.