×

Spectral gap for zero-range dynamics. (English) Zbl 0870.60095

The authors study symmetric zero-range processes. More precisely, they consider the finite coordinate processes confined to cube of size \(n^d\), and prove uniform \({\mathcal O}(n^2)\) estimates for the spectral gap of these processes, under some conditions on the rate function. The authors follow the method outlined by Lu and Yau where a similar spectral gap is proved for Kawasaki dynamics.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60F05 Central limit and other weak theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andjel, E. D. (1982). Invariant measures for the zero range process. Ann. Probab. 10 525- 547. · Zbl 0492.60096
[2] Diaconis, P. and Freedman, D. A. (1988). Conditional limit theorems for exponential families and finite versions of de Finetti’s theorem. J. Theoret. Probab. 1 381-410. · Zbl 0655.60029
[3] Karlin, S. (1968). Total Positivity. Stanford Univ. Press. · Zbl 0219.47030
[4] Kipnis, C. (1986). Central limit theorems for infinite series of queues and applications to simple exclusion. Ann. Probab. 14 397-408. · Zbl 0601.60098
[5] Kipnis, C. and Landim, C. (1995). Hy drody namical Limit of Interacting Particle Sy stems.
[6] Kipnis, C., Landim, C. and Olla, S. (1994). Hy drody namical limit for a non gradient sy stem: the generalized sy mmetric exclusion process. Comm. Pure Appl. Math. 47 1475-1545. · Zbl 0814.76003
[7] Liggett, T. M. (1985). Interacting Particle Sy stems. Springer, New York.
[8] Lu, S. L. and Yau, H. T. (1993). Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dy namics. Comm. Math. Phy s. 156 399-433. · Zbl 0779.60078
[9] Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, New York. · Zbl 0322.60043
[10] Quastel, J. (1992). Diffusion of color in the simple exclusion process. Comm. Pure Appl. Math. 45 623-679. · Zbl 0769.60097
[11] Sethuraman, S. and Xu, L. (1996). A central limit theorem for conservative particle dy namics. Ann. Probab. 24 1622-1650. · Zbl 0872.60079
[12] Sokal, A. D. and Thomas, L. E. (1989). Exponential convergence to equilibrium for a class of random-walk models. J. Statist. Phy s. 54 799-828. · Zbl 0668.60061
[13] Varadhan, S. R. S. (1994). Nonlinear diffusion limit for a sy stem with nearest neighbor interactions II. In Asy mptotic Problems in Probability Theory: Stochastic Models and Diffusion on Fractals (K. Elworthy and N. Ikeda, eds.) 75-128. Wiley, New York. · Zbl 0793.60105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.