×

Construction of a regular extension of \(\mathbb{Q}(T)\) with Galois group \(M_{24}\). (Construction d’une extension régulière de \(\mathbb{Q}(T)\) de groupe de Galois \(M_{24}\).) (French) Zbl 0871.12006

It is proved that there exists a regular extension of \(\mathbb{K}(T)\) with Galois group the Mathieu group \(M_{23}\), where \(\mathbb{K}\) is a number field such that the equation \(x^2+ y^2+ z^2 =0\) has a nontrivial solution. The Mathieu group \(M_{23}\) is the only sporadic simple group which it is not yet known to occur as a Galois group over \(\mathbb{Q}\). B. H. Matzat [Publ., Math. Sci. Res. Inst. 16, 361-383 (1989; Zbl 0784.12005)] shows that the Mathieu group \(M_{24}\) appears as a Galois group of a regular extension of \(\mathbb{Q}(T)\), by proving the existence of a rational point in an appropriate Hurwitz space. The author performs such construction explicitly, replacing the usual tools of symbolic computation by numerical calculations. He determines the fixed field of degree 24 and genus 0 corresponding to the subgroup \(M_{23}\) and he shows that this fixed field is rational whenever the curve \(x^2+ y^2+ z^2 =0\) has \(\mathbb{K}\)-rational points.
Reviewer: N.Vila (Barcelona)

MSC:

12F12 Inverse Galois theory
12Y05 Computational aspects of field theory and polynomials (MSC2010)

Citations:

Zbl 0784.12005
PDF BibTeX XML Cite
Full Text: DOI EuDML EMIS

References:

[1] Conway J. H., Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups (1985) · Zbl 0568.20001
[2] Couveignes Jean-Marc, Ann. Inst. Fourier (Grenoble) 44 pp 1– (1994) · Zbl 0791.11059
[3] Couveignes J.-M., The Grothendieck theory of dessins d’enfants: pp 79–
[4] Debés P., Pacific J. Math. 163 pp 81– (1994) · Zbl 0788.12001
[5] DOI: 10.1080/00927877708822158 · Zbl 0478.12006
[6] Fried M. D., Mathematische Annalen 290 pp 771– (1991) · Zbl 0763.12004
[7] Heinrich Matzat B., Konstruktive Galoistheorie (1987)
[8] Heinrich Matzat B., Galois Groups over Q (édité par Y. Ihara et al.) pp 361– (1989)
[9] Heinrich Matzat B., Séminaire de Théorie des Nombres, Paris pp 179– (1993)
[10] Malle G., Inverse Galois Theory (1993) · Zbl 0780.12005
[11] Schneps Leila, The Grothendieck theory of dessins d’enfants pp 47– (1994) · Zbl 0798.00001
[12] Serre Jean-Pierre, Topics in Galois Theory (1992)
[13] Todd J. A., Quart. J. Math. Oxford 21 pp 421– (1970) · Zbl 0205.03901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.