×

zbMATH — the first resource for mathematics

Quantum \({\mathcal W}\)-algebras and elliptic algebras. (English) Zbl 0871.17007
By E. Frenkel and N. Reshetikhin [Commun. Math. Phys. 178, 237-264 (1996; Zbl 0869.17014)] Poisson algebras \({\mathcal W}_q(\mathfrak g)\) were introduced as \(q\)-deformations of classical \(\mathcal W\)-algebras. They appear as centers of certain quantized universal enveloping algebras. Here \(\mathfrak g\) denotes a finite-dimensional simple Lie algebra. For \(\mathfrak g=\mathfrak s\mathfrak l_N\) the Wakimoto realization provides a homomorphism from this center to a Heisenberg-Poisson algebra (a free field realization). For \(q=1\) this is the Miura transformation. In the article under review a quantum \(\mathcal W\)-algebra depending on two parameters \(q\) and \(p\) associated to \(\mathfrak s\mathfrak l_N\) is introduced. For special values it is shown that these algebras become the ordinary \(\mathcal W\) algebra of \(\mathfrak s\mathfrak l_N\) or its \(q\)-deformed version. Using Heisenberg algebras which depend on 2 parameters, free field realization of this quantum \(\mathcal W\)-algebra and screening currents are constructed. It is interesting to note that in their definition and in particular in the commutation relations of the generating functions, elliptic functions appear. This is the central part of the article. The relation with the “locality property” of vertex algebras is discussed. The article deals with \(\mathfrak s\mathfrak l_N\). In a concluding paragraph generalizations to arbitrary simply-laced simple \(\mathfrak g\) are discussed. It is expected that the corresponding results are also true here.

MSC:
17B37 Quantum groups (quantized enveloping algebras) and related deformations
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
17B68 Virasoro and related algebras
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Frenkel, E., Reshetikhin, N.: Quantum affine algebras and deformations of the Virasoro and . Preprint q-alg/9505025 · Zbl 0869.17014
[2] Shiraishi, J.: Phys. Lett.A171, 243–248 (1992); Awata, H., Odake, S., Shiraishi, J.: Commun. Math. Phys.162, 61–83 (1994) · doi:10.1016/0375-9601(92)90635-Y
[3] Drinfeld, V.G., Sokolov, V.V.: Sov. Math. Dokl.23, 457–462 (1981); J. Sov. Math.30, 1975–2035 (1985)
[4] Baxter, R.J.: Exactly Solved Models of Statistical Mechanics. New York-London: Academic Press 1982; Reshetikhin, N.Yu.: Lett. Math. Phys.7, 205–213 (1983); Theor. Math. Phys.63, 559–569 (1985); Lett. Math. Phys.14, 235–246 (1987); Bazhanov, V.V., Reshetikhin, N.Yu.: J. Phys.A23, 1477–1492 (1990); Kuniba, A., Suzuki, J.: Analytic Bethe Ansatz for fundamental representations of Yangians. Preprint hep-th/9406180 (1994)
[5] Feigin, B., Frenkel, E., Reshetikhin, N.: Commun. Math. Phys.166, 27–62 (1994) · Zbl 0812.35103 · doi:10.1007/BF02099300
[6] Shiraishi, J., Kubo, H., Awata, H., Odake, S.: A quantum deformation of the Virasoro algebra and Macdonald symmetric functions. Preprint q/alg-9507034 · Zbl 0867.17010
[7] Awata, H., Odake, S., Shiraishi, J.: Integral representations of the Macdonald symmetric functions. Preprint q-alg/9506006 · Zbl 0849.05069
[8] Fateev, V., Lukyanov, S.: Int. J. Mod. Phys.A3, 507–520 (1988) · doi:10.1142/S0217751X88000205
[9] Bilal, A., Gervais, J.-L.: Nucl. Phys.318, 579 (1989) · doi:10.1016/0550-3213(89)90633-0
[10] Feigin, B., Odesskii, A.: Vector bundles on elliptic curve and Sklyanin algebras. Preprint RIMS
[11] Drinfeld, V.G.: Sov. Math. Dokl.36, 212–216 (1987)
[12] Bouwknegt, P., McCarthy, J., Pilch, K.: Commun. Math. Phys.131, 125–156 (1990) · Zbl 0704.17009 · doi:10.1007/BF02097682
[13] Schechtman, V., Varchenko, A.: In: ICM-90 Satellite Conference Proceedings Algebraic Geometry and Analytic Geometry, Berlin, Heidelberg, New York. Springer, 1991, pp. 182–191
[14] Varchenko, A.: Multidimensional Hypergeometric Functions and Representation Theory of Lie Algebras and Quantum Groups, Singapore: World Scientific, 1994 · Zbl 0807.17014
[15] Gasper, G., Rahman, M.: Basic Hypergeometric Series, Cambridge: Cambridge University Press, 1990 · Zbl 0695.33001
[16] Borcherds, R.: Proc. Natl. Acad. Sci. USA83, 3068–3071 (1986) · Zbl 0613.17012 · doi:10.1073/pnas.83.10.3068
[17] Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. New York: Academic Press, 1988 · Zbl 0674.17001
[18] Feigin, B., Frenkel, E.: Integrals of motion and quantum groups. Preprint hep-th/9310022, to appear in Proceedings of the Summer School Integrable Systems and Quantum Groups, Montecatini Terme, Italy, June 1993, Lect. Notes in Math.1620, Berlin, Heidelberg, New York: Springer
[19] Lukyanov, S., Pugai, Ya.: Bosonization of ZF algebras: Direction toward deformed Virasoro algebra. Preprint hep-th/9412128
[20] Lukyanov, S.: Commun. Math. Phys.167, 183–226, (1995); Phys. Lett.B325, 409–417 (1994) · Zbl 0818.46079 · doi:10.1007/BF02099357
[21] Lukyanov, S.: A note on the deformed Virasoro algebra. Preprint hep-th/9509037 · Zbl 0905.17007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.