Laursen, K. B. Essential spectra through local spectral theory. (English) Zbl 0871.47003 Proc. Am. Math. Soc. 125, No. 5, 1425-1434 (1997). Summary: Based on a nice observation of Eschmeier, this is a study of the use of local spectral theory in investigations of the semi-Fredholm spectrum of a continuous linear operator. We also examine the retention of the semi-Fredholm spectrum under weak intertwining relations; it is shown, inter alias, that if two decomposable operators are intertwined asymptotically by a quasi-affinity then they have identical semi-Fredholm spectra. The results are applied to multipliers on commutative semisimple Banach algebras. Cited in 4 Documents MSC: 47A10 Spectrum, resolvent 47A53 (Semi-) Fredholm operators; index theories 43A22 Homomorphisms and multipliers of function spaces on groups, semigroups, etc. 46J10 Banach algebras of continuous functions, function algebras 47A11 Local spectral properties of linear operators 47B40 Spectral operators, decomposable operators, well-bounded operators, etc. Keywords:local spectral theory; semi-Fredholm spectrum; weak intertwining relations; decomposable operators; multipliers on commutative semisimple Banach algebras PDFBibTeX XMLCite \textit{K. B. Laursen}, Proc. Am. Math. Soc. 125, No. 5, 1425--1434 (1997; Zbl 0871.47003) Full Text: DOI References: [1] Pietro Aiena, Riesz multipliers on commutative semisimple Banach algebras, Arch. Math. (Basel) 54 (1990), no. 3, 293 – 303. · Zbl 0682.46035 · doi:10.1007/BF01188526 [2] Pietro Aiena and Kjeld B. Laursen, Multipliers with closed range on regular commutative Banach algebras, Proc. Amer. Math. Soc. 121 (1994), no. 4, 1039 – 1048. · Zbl 0806.47032 [3] E Albrecht, J Eschmeier: Analytic functional models and local spectral theory (manuscript, 1987) · Zbl 0881.47007 [4] E. Albrecht and R. D. Mehta, Some remarks on local spectral theory, J. Operator Theory 12 (1984), no. 2, 285 – 317. · Zbl 0583.47039 [5] Ion Colojoară and Ciprian Foiaş, Theory of generalized spectral operators, Gordon and Breach, Science Publishers, New York-London-Paris, 1968. Mathematics and its Applications, Vol. 9. · Zbl 0189.44201 [6] J Eschmeier, K B Laursen, M M Neumann: Multipliers with natural local spectra on commutative Banach algebras, J Functional Analysis, to appear. · Zbl 0897.46038 [7] Domingo A. Herrero, On the essential spectra of quasisimilar operators, Canad. J. Math. 40 (1988), no. 6, 1436 – 1457. · Zbl 0723.47015 · doi:10.4153/CJM-1988-066-x [8] Ronald Larsen, An introduction to the theory of multipliers, Springer-Verlag, New York-Heidelberg, 1971. Die Grundlehren der mathematischen Wissenschaften, Band 175. · Zbl 0213.13301 [9] K B Laursen: Spectral subspaces and automatic continuity, Doctoral Dissertation, Copenhagen 1991. [10] K. B. Laursen and M. Mbekhta, Closed range multipliers and generalized inverses, Studia Math. 107 (1993), no. 2, 127 – 135. · Zbl 0812.47031 [11] Kjeld B. Laursen, Vivien G. Miller, and Michael M. Neumann, Local spectral properties of commutators, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 2, 313 – 329. · Zbl 0822.47006 · doi:10.1017/S0013091500019106 [12] Kjeld B. Laursen and Michael M. Neumann, Local spectral properties of multipliers on Banach algebras, Arch. Math. (Basel) 58 (1992), no. 4, 368 – 375. · Zbl 0726.47019 · doi:10.1007/BF01189927 [13] K. B. Laursen and M. M. Neumann, Asymptotic intertwining and spectral inclusions on Banach spaces, Czechoslovak Math. J. 43(118) (1993), no. 3, 483 – 497. · Zbl 0806.47001 [14] Kjeld B. Laursen and Michael M. Neumann, Local spectral theory and spectral inclusions, Glasgow Math. J. 36 (1994), no. 3, 331 – 343. · Zbl 0851.47002 · doi:10.1017/S0017089500030937 [15] K. B. Laursen and P. Vrbová, Some remarks on the surjectivity spectrum of linear operators, Czechoslovak Math. J. 39(114) (1989), no. 4, 730 – 739. · Zbl 0715.47003 [16] Mostafa Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), no. 2, 159 – 175 (French). · Zbl 0657.47038 · doi:10.1017/S0017089500006807 [17] Mostafa Mbekhta, Local spectrum and generalized spectrum, Proc. Amer. Math. Soc. 112 (1991), no. 2, 457 – 463. · Zbl 0739.47002 [18] T L Miller, V G Miller: Equality of essential spectra of quasisimilar operators with property \((\delta )\), Glasgow Math. J, to appear. CMP 96:08 · Zbl 0849.47010 [19] V G Miller, M M Neumann: Local spectral theory for multipliers and convolution operators, in Algebraic methods in operator theory, Birkhäuser, Boston, 1994. [20] M M Neumann: Local spectral theory for operators on Banach space and applications to convolution operators on group algebras, in Seminar Notes in Functional Analysis and PDEs 1993/94, Department of Mathematics, Louisiana State University, Baton Rouge, LA, 1994. [21] Ch. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), no. 5, 484 – 489 (German). · Zbl 0721.47005 · doi:10.1007/BF01190270 [22] Christoph Schmoeger, On isolated points of the spectrum of a bounded linear operator, Proc. Amer. Math. Soc. 117 (1993), no. 3, 715 – 719. · Zbl 0780.47019 [23] T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. Sect. A 87 (1987), no. 2, 137 – 146. · Zbl 0621.47016 [24] M Zafran: On the spectra of multipliers, Pac. J Math. 47 (1973), 609-626. · Zbl 0242.43006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.