×

zbMATH — the first resource for mathematics

Riemannian symmetric superspaces and their origin in random-matrix theory. (English) Zbl 0871.58005
Motivated by physical considerations, the author studies the relationship between Gaussian random matrix ensembles defined over the tangent space of Riemannian symmetric spaces and Riemannian symmetric superspaces.

MSC:
58A50 Supermanifolds and graded manifolds
58C50 Analysis on supermanifolds or graded manifolds
53C35 Differential geometry of symmetric spaces
82D30 Statistical mechanical studies of random media, disordered materials (including liquid crystals and spin glasses)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1007/BF01319839 · doi:10.1007/BF01319839
[2] DOI: 10.1007/BF01598751 · doi:10.1007/BF01598751
[3] DOI: 10.1080/00018738300101531 · doi:10.1080/00018738300101531
[4] DOI: 10.1016/0370-1573(85)90070-5 · doi:10.1016/0370-1573(85)90070-5
[5] DOI: 10.1063/1.1703773 · Zbl 0105.41604 · doi:10.1063/1.1703773
[6] Efetov K. B., Zh. Eksp. Teor. Fiz. 88 pp 1032– (1985)
[7] DOI: 10.1103/PhysRevB.34.6394 · doi:10.1103/PhysRevB.34.6394
[8] DOI: 10.1016/0550-3213(91)90028-V · doi:10.1016/0550-3213(91)90028-V
[9] Efetov K. B., Zh. Eksp. Teor. Fiz. 85 pp 764– (1983)
[10] DOI: 10.1007/BF02102812 · Zbl 0746.58014 · doi:10.1007/BF02102812
[11] DOI: 10.1103/PhysRevLett.69.1584 · Zbl 0968.82529 · doi:10.1103/PhysRevLett.69.1584
[12] DOI: 10.1006/aphy.1994.1115 · doi:10.1006/aphy.1994.1115
[13] DOI: 10.1103/PhysRevB.53.1490 · doi:10.1103/PhysRevB.53.1490
[14] DOI: 10.1103/PhysRevB.51.5480 · doi:10.1103/PhysRevB.51.5480
[15] Falko V. I., Phys. Rev. B 52 pp 17– (1995)
[16] DOI: 10.1103/PhysRevB.53.1186 · doi:10.1103/PhysRevB.53.1186
[17] DOI: 10.1006/aphy.1995.1089 · doi:10.1006/aphy.1995.1089
[18] Muzykantskii B. A., Pis’ma Zh. Eksp. Teor. Fiz. 62 pp 68– (1995)
[19] DOI: 10.1016/0550-3213(93)90601-K · doi:10.1016/0550-3213(93)90601-K
[20] DOI: 10.1103/PhysRevLett.72.2531 · doi:10.1103/PhysRevLett.72.2531
[21] DOI: 10.1016/0550-3213(94)90031-0 · Zbl 1020.82583 · doi:10.1016/0550-3213(94)90031-0
[22] DOI: 10.1103/PhysRevLett.76.3420 · doi:10.1103/PhysRevLett.76.3420
[23] Berezin F. A., Sov. Math. Dokl. 16 pp 1218– (1975)
[24] DOI: 10.1007/BFb0087788 · doi:10.1007/BFb0087788
[25] DOI: 10.1090/S0002-9947-1987-0869418-5 · doi:10.1090/S0002-9947-1987-0869418-5
[26] DOI: 10.1063/1.526746 · Zbl 0582.53055 · doi:10.1063/1.526746
[27] DOI: 10.1090/S0002-9947-1986-0849473-8 · doi:10.1090/S0002-9947-1986-0849473-8
[28] DOI: 10.1063/1.524585 · Zbl 0447.58003 · doi:10.1063/1.524585
[29] DOI: 10.1007/BF01205932 · Zbl 0602.58003 · doi:10.1007/BF01205932
[30] DOI: 10.1016/0001-8708(77)90017-2 · Zbl 0366.17012 · doi:10.1016/0001-8708(77)90017-2
[31] DOI: 10.1007/3-540-13911-7_78 · doi:10.1007/3-540-13911-7_78
[32] DOI: 10.1016/0550-3213(82)90056-6 · doi:10.1016/0550-3213(82)90056-6
[33] DOI: 10.1007/BF01646824 · Zbl 0221.62019 · doi:10.1007/BF01646824
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.