×

zbMATH — the first resource for mathematics

A representation of partially ordered preferences. (English) Zbl 0871.62008
Summary: This essay considers decision-theoretic foundations for robust Bayesian statistics. We modify the approaches of Ramsey, de Finetti, Savage and Anscombe and Aumann in giving axioms for a theory of robust preferences. We establish that preferences which satisfy axioms for robust preferences can be represented by a set of expected utilities. In the presence of two axioms relating to state-independent utility, robust preferences are represented by a set of probability/utility pairs, where the utilities are almost state-independent (in a sense which we make precise). Our goal is to focus on preference alone and to extract whatever probability and/or utility information is contained in the preference relation when that is merely a partial order. This is in contrast with the usual approach to Bayesian robustness that begins with a class of “priors” or “likelihoods”, and a single loss function, in order to derive preferences from these probability/utility assumptions.

MSC:
62A01 Foundations and philosophical topics in statistics
62C05 General considerations in statistical decision theory
62C10 Bayesian problems; characterization of Bayes procedures
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ANSCOMBE, F. J. and AUMANN, R. J. 1963. A definition of subjective probability. Ann. Math. Statist. 34 199 205. Z. · Zbl 0114.07204
[2] AUMANN, R. J. 1962. Utility theory without the completeness axiom. Econometrica 30 445 462. Z. · Zbl 0121.15202
[3] AUMANN, R. J. 1964. Utility theory without the completeness axiom: a correction. Econometrica 32 210 212. Z. JSTOR: · Zbl 0133.13004
[4] BERGER, J. 1985. Statistical Decision Theory and Bayesian Analy sis, 2nd ed. Springer, New York.Z. · Zbl 0572.62008
[5] DE FINETTI, B. 1937. La prevision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincare 7 1 68. Ź. · Zbl 0017.07602
[6] DEGROOT, M. 1974. Reaching a consensus. J. Amer. Statist. Assoc. 69 118 121. Z. · Zbl 0282.92011
[7] ELLSBERG, D. 1961. Risk, ambiguity, and the Savage axioms. Quart. J. Econom. 75 643 669. Z. · Zbl 1280.91045
[8] FISHBURN, P. C. 1979. Utility Theory for Decision Making. Krieger, New York. Z. · Zbl 0213.46202
[9] FISHBURN, P. C. 1982. The Foundations of Expected Utility. Reidel, Dordrecht. Z. · Zbl 0497.90001
[10] GIRON, F. J. and RIOS, S. 1980. Quasi-Bayesian behaviour: A more realistic approach to Z decision making? In Bayesian Statistics J. M. Bernardo, M. H. DeGroot, D. V. Lindley. and A. F. M. Smith, eds. 17 38. Univ. Valencia Press. Z. · Zbl 0459.62006
[11] HARTIGAN, J. A. 1983. Bay es Theory. Springer, New York. Z. Z · Zbl 0537.62007
[12] HAUSNER, M. 1954. Multidimensional utilities. In Decision Processes R. M. Thrall, C. H.. Coombs and R. L. Davis, eds. 167 180. Wiley, New York. · Zbl 0058.13804
[13] KADANE, J. B., Ed. 1984. Robustness of Bayesian Analy sis. North-Holland, Amsterdam. Z. · Zbl 0537.62031
[14] KADANE, J. B. 1986. Progress toward a more ethical method for clinical trials. Journal of Medicine and Philosophy 11 385 404. Z.
[15] KADANE, J. B. and SEDRANSK, N. 1980. Toward a more ethical clinical trial. In Bayesian Z. Statistics J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds. 329 338. Univ. Valencia Press. Z.
[16] KANNAI, Y. 1963. Existence of a utility in infinite dimensional partially ordered spaces. Israel J. Math. 1 229 234. Z. · Zbl 0152.38404
[17] LEVI, I. 1974. On indeterminate probabilities. J. Philos. 71 391 418. Z.
[18] LEVI, I. 1980. The Enterprise of Knowledge. MIT Press. Z.
[19] LEVI, I. 1990. Pareto unanimity and consensus. J. Philos. 87 481 492. Z. Z.
[20] MOSKOWITZ, H., WONG, R. T. and CHU, P.-Y. 1988. Robust interactive decision-analysis RID : Concepts, methodology, and sy stem principles. Paper 948, Krannert Graduate School of Management, Purdue Univ. Z.
[21] NAU, R. F. 1992. Indeterminate probabilities on finite sets. Ann. Statist. 20 1737 1767. Z. · Zbl 0782.62006
[22] NAU, R. F. 1993. The shape of incomplete preferences. Paper 9301, The Fuqua School of Business, Duke Univ. Z.
[23] RAMSEY, F. P. 1931. Truth and probability. In The Foundations of Mathematics and Other Z. Logical Essay s R. B. Braithwaite, ed. 156 198. Kegan, Paul, Trench, Trubner and Co. Ltd., London. Z.
[24] RIOS INSUA, D. 1990. Sensitivity Analy sis in Multi-Objective Decision Making. Springer, New York.Z.
[25] RIOS INSUA, D. 1992. On the foundations of decision making under partial information. Theory and Decision 33 83 100. Z. · Zbl 0756.90004
[26] SAVAGE, L. J. 1954. The Foundations of Statistics. Wiley, New York. Z. · Zbl 0055.12604
[27] SCHERVISH, M. J., SEIDENFELD, T. and KADANE, J. B. 1990. State-dependent utilities. J. Amer. Statist. Assoc. 85 840 847. Z. JSTOR: · Zbl 0726.90011
[28] SCHERVISH, M. J., SEIDENFELD, T. and KADANE, J. B. 1991. Shared preferences and statedependent utilities. Management Sci. 37 1575 1589. Z. · Zbl 0747.90029
[29] SEIDENFELD, T., KADANE, J. B. and SCHERVISH, M. J. 1989. On the shared preferences of two Bayesian decision makers. J. Philos. 86 225 244. Z. JSTOR:
[30] SEIDENFELD, T. and SCHERVISH, M. J. 1983. A conflict between finite additivity and avoiding Dutch Book. Philos. Sci. 50 398 412. Z. JSTOR:
[31] SEIDENFELD, T., SCHERVISH, M. J. and KADANE, J. B. 1990. Decisions without ordering. In Z. Acting and Reflecting W. Sieg, ed. 143 170. Kluwer, Dordrecht. Z.
[32] SMITH, C. A. B. 1961. Consistency in statistical inference and decision. J. Roy. Statist. Soc. Ser. B 23 1 25. Z. JSTOR: · Zbl 0124.09603
[33] SZPILRAJN, E. 1930. Sur l’extension de l’ordre partiel. Fund. Math. 16 386 389. Z. · JFM 56.0843.02
[34] VON NEUMANN, J. and MORGENSTERN, O. 1947. Theory of Games and Economic Behavior, 2nd ed. Princeton Univ. Press. Z. · Zbl 1241.91002
[35] WALLEY, P. 1991. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London. Z. · Zbl 0732.62004
[36] WHITE, C. C. 1986. A posteriori representations based on linear inequality descriptions of a priori and conditional probabilities. IEEE Trans. Sy stems Man Cy bernet. 16 570 573. Z.
[37] WILLIAMS, P. 1976. Indeterminate probabilities. In Formal Methods in the Methodology of Z. Empirical Sciences M. Przelecki, K. Szaniawski and R. Wojcicki, eds. 229 246. Reidel, Dordrecht. · Zbl 0395.60003
[38] PITTSBURGH, PENNSy LVANIA 15213
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.