On weighted sums in abelian groups. (English) Zbl 0872.11016

Sei \(G\) eine abelsche Gruppe der Ordnung \(n\) und \(k\in\mathbb{N}\). Sei weiter \(x_0,x_1,\dots,x_{n+k-1}\) eine Folge von Elementen aus \(G\) mit der Eigenschaft, daß \(x_0\) der am häuftigsten auftretende Wert in der Folge ist. Schließlich werden Gewichte \(w_i\) eingeführt als eine Menge \(\{w_i\mid 1\leq i\leq k\}\) ganzer Zahlen teilerfremd zu \(n\). Dann sagt ein Hauptresultat der Arbeit (Theorem 2.1): Es gibt eine Permutation \(\alpha\) von \([1,n+k-1]\), so daß gilt \[ \sum_{1\leq i\leq k}w_ix_{\alpha(i)}= \Biggl(\sum_{1\leq i\leq k}w_i\Biggr)x_0. \] In einem zweiten Teil der Arbeit werden konstante Gewichte \(w_i\) betrachtet.
Reviewer: E.Härtter (Mainz)


11B83 Special sequences and polynomials
20K01 Finite abelian groups
Full Text: DOI


[1] Alon, N.; Dubiner, M., Zero-sum sets of prescribed size, (), 33-50 · Zbl 0823.11006
[2] Y. Caro, Zero-sum Ramsey problems, a survey, Discrete Math., to appear. · Zbl 0856.05068
[3] Y. Caro, On zero-sum subsequences in abelian non-cyclic groups, Israel Jour. of Mathematics, to appear. · Zbl 0848.20047
[4] Erdös, P.; Ginzburg, A.; Ziv, A., A theorem in additive number theory, Bull. res. council, Israel, 10, (Aug. 1961)
[5] Füredi, Z.; Kleitmann, D.J., The minimal number of zero sums, (), 159-172 · Zbl 0795.05014
[6] Hamidoune, Y.O., On a subgroup contained in some words with a bounded length, Discrete math., 103, 171-176, (1992) · Zbl 0773.20004
[7] Y.O. Hamidoune, On weighted sequence sums, Combin. Algorithms Probab. to appear.
[8] Mann, H.B., Addition theorems, (1965), Wiley New York · Zbl 0189.29701
[9] Olson, J.E., A combinatorial problem of Erdös-Ginzburg-Ziv, J. number theory, 8, 52-57, (1976) · Zbl 0333.05009
[10] Weidong, Gao, Some problems in additive group theory and additive number theory, Ph.D. dissertation, (1994), (Abstract)
[11] Weidong, Gao, An addition theorem for finite cyclic groups, (1994), preprint · Zbl 0924.11014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.