Fabre, Stéphane Substitutions and \(\beta\) systems of numeration. (Substitutions et \(\beta\)-systèmes de numération.) (French) Zbl 0872.11017 Theor. Comput. Sci. 137, No. 2, 219-236 (1995). Summary: Dans son fameux article, Cobham a montré que la suite des états d’un \(k\)-automate était le point fixe d’une substitution de longueur constante [A. Cobham, Math. Systems Theory 6, 164-192 (1972; Zbl 0253.02029)]. Après avoir introduit de nouvelles notions (substitution de longueur \(\theta\), suite \(\theta\)-automatique\(\ldots \)), nous donnons un théorème analogue pour les systèmes de numération associés à des \(\beta\)-nombres. Cited in 29 Documents MSC: 11B85 Automata sequences 68R99 Discrete mathematics in relation to computer science 11A67 Other number representations Keywords:Cobham’s theorem; substitution; automatic sequence; numeration systems Citations:Zbl 0253.02029 PDF BibTeX XML Cite \textit{S. Fabre}, Theor. Comput. Sci. 137, No. 2, 219--236 (1995; Zbl 0872.11017) Full Text: DOI OpenURL References: [2] Cobham, A., Uniform tag sequences, Mathe. System Theory, 6, 164-192 (1972) · Zbl 0253.02029 [3] Eilenberg, S., (Automata, Languages and Machines, Vol. A (1974), Academic Press: Academic Press New York) · Zbl 0317.94045 [4] Frougny, C., Systèmes de numération linéaires et automates finis, (Thèse d’Etat (1986), Université Paris-VII) [5] Parry, W., On the β-expensions of real numbers, Acta Math. Acad. Sci. Hungar, 11, 401-416 (1960) · Zbl 0099.28103 [7] Renyi, A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar, 8, 477-493 (1957) · Zbl 0079.08901 [8] Shallit, J., A généralization of automatic sequences, Theoret. Comput. Sci., 61, 1-16 (1988) · Zbl 0662.68052 [9] Zeckendorf, E., Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Royale des Sciences de Lièges, 3-4, 179-182 (1960) · Zbl 0252.10011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.