Holton, Charles; Zamboni, Luca Q. Exotic actions on trees. (English) Zbl 0872.20028 Bull. Lond. Math. Soc. 29, No. 3, 309-313 (1997). Summary: We give an explicit example of an exotic (non-simplicial), geometric free action of the free group \(\mathbb{F}_3\) on an \(\mathbb{R}\)-tree \(T\). We begin by associating an interval translation mapping of the unit interval to an automorphism \(\psi\) of \(\mathbb{F}_3\). We use a result of D. Gaboriau and G. Levitt to obtain an \(\mathbb{F}_3\)-action on an \(\mathbb{R}\)-tree \(T\). We show that for our particular choice of \(\psi\), the resulting \(\mathbb{F}_3\)-action is minimal, free and exotic. Cited in 1 Document MSC: 20E08 Groups acting on trees 20E36 Automorphisms of infinite groups 20E05 Free nonabelian groups Keywords:geometric free actions; free groups; interval translation mappings; automorphisms PDF BibTeX XML Cite \textit{C. Holton} and \textit{L. Q. Zamboni}, Bull. Lond. Math. Soc. 29, No. 3, 309--313 (1997; Zbl 0872.20028) Full Text: DOI