×

Fundamentals of fuzzy probability theory. (English) Zbl 0872.60003

Summary: The canonical classical extension of quantum mechanics studied recently by E. G. Beltrametti and the author [J. Phys. A, Math. Gen. 28, No. 12, 3329-3343 (1995; Zbl 0859.46049) and ibid. (to appear)] opens a new way toward generalizing the standard probability theory. The emerging fuzzy probability theory is able to give a full account of both classical and quantal probabilities, and – like the standard probability theory – could be of universal use, far outside the borders of physics. A specific feature of this hypothetical theory of probability is its mixed, classical-quanta character: classical as well as quantal random variables are described on an equal footing in a unified framework. Some new features of the fuzzy probability theory are shown on simple examples.

MSC:

60A99 Foundations of probability theory
81P20 Stochastic mechanics (including stochastic electrodynamics)
03E72 Theory of fuzzy sets, etc.

Citations:

Zbl 0859.46049
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alfsen, E. M. (1971).Compact Convex Sets and Boundary Integrals, Springer-Verlag, Berlin. · Zbl 0209.42601
[2] Ali, S. T., and Prugovečki, E. (1977).Journal of Mathematical Physics,18, 219. · Zbl 0364.46055 · doi:10.1063/1.523259
[3] Aspect, A. (1976).Physical Review D,14, 1944. · doi:10.1103/PhysRevD.14.1944
[4] Aspect, A., Grangier, P., and Roger, G. (1981).Physical Review Letters,47, 460. · doi:10.1103/PhysRevLett.47.460
[5] Aspect, A., Grangier, P., and Roger, G. (1982).Physical Review Letters,49, 91. · doi:10.1103/PhysRevLett.49.91
[6] Bauer, H. (1981).Probability Theory and Elements of Measure Theory, 2nd English ed., Academic Press, London. · Zbl 0466.60001
[7] Bell, J. S. (1964).Physics,1, 195.
[8] Beltrametti, E. G., and Bugajski, S. (1995).Journal of Physics A,28, 3329. · Zbl 0859.46049 · doi:10.1088/0305-4470/28/12/007
[9] Beltrametti, E. G., and Bugajski, S. (1996).Journal of Physics A, in press. · Zbl 0859.46049
[10] Beltrametti, E. G., and Cassinelli, G. (1981).The Logic of Quantum Mechanics, Addison-Wesley, Reading, Massachusetts. · Zbl 0491.03023
[11] Bugajski, S. (1993).International Journal of Theoretical Physics,32, 969. · Zbl 0809.03044 · doi:10.1007/BF01215303
[12] Busch, P., and Quadt, R. (1993).International Journal of Theoretical Physics,32, 2261. · doi:10.1007/BF00672998
[13] Busch, P., Hellwig, K.-E., and Stulpe, W. (1993).International Journal of Theoretical Physics,32, 399. · Zbl 0813.60004 · doi:10.1007/BF00673351
[14] Busch, P., Grabowski, M., and Lahti, P. J. (1995).Operational Quantum Physics, Springer-Verlag, Berlin. · Zbl 0863.60106
[15] Davies, E. B. (1972).Journal of Mathematical Physics,13, 39. · Zbl 0229.02029 · doi:10.1063/1.1665846
[16] Ghirardi, G. C., Rimini, A., and Weber, T. (1976).Nuovo Cimento,36B, 97.
[17] Holevo, A. S. (1982).Probabilistic and Stochastic Aspects of Quantum Theory, North-Holland, Amsterdam. · Zbl 0497.46053
[18] Jaynes, E. T. (1985). Bayesian methods: General background, inProceedings of the Fourth Annual Workshop on Bayesian/Maximum Entropy Methods in Geophysical Inverse Problems (Calgary 1985), J. H. Justice, ed., Cambridge University Press, Cambridge, Massachusetts.
[19] Ludwig, G. (1954).Die Grundlagen der Quantenmechanik, Springer-Verlag, Berlin [English translation, Springer-Verlag, Berlin (1983)]. · Zbl 0058.22803
[20] Misra, B. (1974). On a new definition of quantal states, inPhysical Reality and Mathematical Description, C. P. Enz and J. Mehra, eds., Reidel, Dordrecht, Holland, pp. 455–476.
[21] Newmann, H. (1985). The size of sets of physically possible states and effects, inRecent Development in Quantum Logic, P. Mittelstaedt and E.-W. Stachow, eds., Bibliographisches Institut, Mannheim, pp. 337–348.
[22] Neveu, J. (1965).Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco. · Zbl 0137.11301
[23] Prugovečki, E. (1986).Stochastic Quantum Mechanics and Quantum Space Time, 2nd ed., D. Reidel, Dordrecht, Holland.
[24] Reed, M., and Simon, B. (1972).Methods of Modern Mathematical Physics 1. Functional Analysis, Academic Press, New York. · Zbl 0242.46001
[25] Singer, M., and Stulpe, W. (1992).Journal of Mathematical Physics,33, 131. · doi:10.1063/1.529975
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.