Ritter, Klaus; Wasilkowski, Grzegorz W.; Woźniakowski, Henryk Multivariate integration and approximation for random fields satisfying Sacks-Ylvisaker conditions. (English) Zbl 0872.62063 Ann. Appl. Probab. 5, No. 2, 518-540 (1995). Summary: We present sharp bounds on the minimal errors of linear estimators for multivariate integration and \(L_2\)- approximation. This is done for a random field whose covariance kernel is a tensor product of one-dimensional kernels that satisfy the Sacks-Ylvisaker regularity conditions [see J. Sacks and D. Ylvisaker, Ann. math. Stat. 39, 49-69 (1968; Zbl 0165.21505)]. Cited in 30 Documents MSC: 62H12 Estimation in multivariate analysis 41A55 Approximate quadratures 41A50 Best approximation, Chebyshev systems 41A63 Multidimensional problems 62G05 Nonparametric estimation 62M40 Random fields; image analysis Keywords:L2 approximation; optimal linear estimators; reproducing kernel Hilbert spaces; sharp bounds; minimal errors of linear estimators; multivariate integration; random field; Sacks-Ylvisaker regularity conditions Citations:Zbl 0165.21505 PDF BibTeX XML Cite \textit{K. Ritter} et al., Ann. Appl. Probab. 5, No. 2, 518--540 (1995; Zbl 0872.62063) Full Text: DOI OpenURL