zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Static output feedback -- a survey. (English) Zbl 0872.93036
Summary: This paper reviews the static output feedback problem in the control of linear, time-invariant (LTI) systems. It includes analytical and computational methods and presents in a unified fashion the knowledge gained in decades of research. The paper shows that although many approaches and techniques exist to approach different versions of the problem, no efficient algorithmic solutions are available.

MSC:
93B52Feedback control
93-02Research monographs (systems and control)
WorldCat.org
Full Text: DOI
References:
[1] Abdallah; C.; Dorato, P.; Karni, S.: SPR design using feedback. Proc. 30th IEEE conf. On decision and contro, 1742-1743 (1991)
[2] Abdauah; C.; Dorato, P.; Yang, W.; Liska, R.; Steinberg, S.: Applications of quantifier elimination theory to control system design. Proc. IEEE 4th mediterranean symp, 340-345 (1996)
[3] Anderson; B.; Bose, N.; Jury, E.: Output feedback stabilization and related problems-solution via decision methods. IEEE trans. Autom. control 20, 53-65 (1975) · Zbl 0302.93026
[4] Balas, M.: Trends in large space structures control theory: fondest hopes, wildest dreams. IEEE trans. Autom. control 27, 522-535 (1982) · Zbl 0496.93007
[5] Basu; S; Pollack, R.; Roy, M. -F.: On the combinatorial and algebraic complexity of quantifier elimination. Proc. 35th symp. On foundations of computer science, 632-641 (1994)
[6] Bengtsson; G.; Lindahl, S.: A design scheme for incomplete state or output feedback with applications to boiler and power system control. Automatica 10, 15-30 (1974)
[7] Bernstein, D.: Some open problems in matrix theory arising in linear systems and control. Lin. algebra applic. 162-164, 409-432 (1992)
[8] Bernstein; D.; Haddad, W.: Optimal output feedback for nonzero set point regulations. IEEE trans. Autom. control 32, 641-645 (1987) · Zbl 0624.93076
[9] Blondel; V.; Tsitsiklis, J.: NP-hardness of some linear control design problems. Eur. J. Control (1995) · Zbl 0892.93050
[10] Blondel; V.; Gevers, M.; Lindquist, A.: Survey on the state of systems and control. Eur. J. Control 1, 5-23 (1995) · Zbl 1177.93001
[11] Boyd; S.; El-Ghaoui, L.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control. (1994) · Zbl 0816.93004
[12] Brasch; F.; Pearson, J.: Pole assignment using dynamic compensators. IEEE trans. Autom. control 16, 348-351 (1970)
[13] Brockett; R.; Byrnes, C.: Multivariable Nyquist criteria, root loci, and pole placement: a geometric viewpoint. IEEE trans. Autom. control 26, 271-284 (1981) · Zbl 0462.93026
[14] Buckley, A.: Hubble space telescope pointing control system design improvement study results. J. guidance, control, dyn. 18, 194-199 (1995)
[15] Byrnes; C.; Crouch, P.: Geometrical methods for the classification of linear feedback systems. Syst. control lett. 6, 239-245 (1985) · Zbl 0576.93016
[16] Calvo-Ramon, J.: Eigenstructure assignment by output feedback and residue analysis. IEEE trans. Autom. control 31, 247-249 (1986) · Zbl 0585.93023
[17] Champetier; C.; Magni, J.: On eigenstructure assignment by output feedback. SIAM J. Control optim. 29, 848-865 (1991) · Zbl 0733.93015
[18] Choi; S.; Sirisena, H.: Computation of optimal output feedback gains for linear multivariable systems. IEEE trans. Autom. control 19, 254-258 (1974) · Zbl 0278.49039
[19] Coxson, G.E.: Computational complexity of robust stability and regularity in families of linear systems. Phd thesis (1993)
[20] Davison, E.: An automatic way of finding optimal control systems for large multivariable plants. Proc. IFAC Tokyo symp. Control, 357-373 (1965)
[21] Davison, E.: On pole assignment in linear systems with incomplete state feedback. IEEE trans. Autom. control 15, 348-351 (1970)
[22] Davison, E.: A note on pole assignment in linear systems with incomplete state feedback. IEEE trans. Autom. control 15, 348-351 (1971)
[23] Davison, E.: A note on pole assignment in linear systems with incomplete state feedback. IEEE trans. Autom. control 16, 98-99 (1971)
[24] Davison; E.; Chow, S.: An algorithm for the assignment of closed-loop poles using output feedback in large multivariable systems. IEEE trans. Autom. control 18, 74-75 (1973) · Zbl 0265.93018
[25] Davison; E.; Tripathi, N.: The optimal decentral-ized control of a large power system: load and frequency control. IEEE trans. Autom. control 23, 312-325 (1978) · Zbl 0383.93008
[26] Davison, E.; Wang, S.: On pole assignment in linear multivariable systems using output feedback. IEEE trans. Autom. control 206, 516-518 (1975) · Zbl 0309.93016
[27] Davison; E.; Rau, N.; Palmay, F.: The optimal decentralized control of a power system consisting of number of interconnected synchronous machines. Int. J. Control 18, 313-1328 (1973)
[28] El-Ghaoui; L.; Gahinet, P.: Rank minimization under LMI constraints: a framework for output feedback problems. Proc. eur. Control conf., 1176-1179 (1993)
[29] Ermer; C.; Vandelinde, V.: Output feedback gains for a linear discrete stochastic control problem. IEEE trans. Autom. control 18, 154-155 (1973) · Zbl 0264.93033
[30] Fletcher; L.; Ho, W.: Approximation results in output feedback pole assignment. Proc. 25th IEEE conf. On decision and control, 1786-1787 (1986)
[31] Fletcher; L.; Magni, J.: Exact pole assignment by output feedback: part 1. Int. J. Control 45, 1995-2007 (1987) · Zbl 0637.93024
[32] Gahinet; P.; Apkarian, P.: A linear matrix inequality approach to H$\infty $control. Int. J. Robust nonlin. Control 4, 421-448 (1994) · Zbl 0808.93024
[33] Garey; M.; Johnson, D.: Computers and intractability: A guide to the theory of NP-completeness. (1979) · Zbl 0411.68039
[34] Geromel; J.; Peres, P.; Souza, S.: Convex analysis of output feedback structural constraints. Proc. 32nd conf. On decision and control, 1363-1364 (1993)
[35] Geromel; J.; De Souza, C.; Skelton, R.: LMI numerical solution for output feedback stabilization. Int. J. Control (1994)
[36] Giannakopoulos; C.; Karcanias, N.: Pole assignment of strictly proper and proper linear systems by constant output feedback. Int. J. Control 42, 543-565 (1985) · Zbl 0591.93023
[37] Grigoriadis; K.; Skelton, R.: Low-order design design for LMI problems using alternating projection methods. Automatica 32, 1117-1125 (1996) · Zbl 0855.93026
[38] Gu; -W., D.; Choi; B.; Postlethwaite, I.: Low-order stabilizing compensators. IEEE trans. Autom. control 38, 1713-1717 (1993) · Zbl 0790.93017
[39] Gu, G.: On the existence of linear optimal control with output feedback. SIAM J. Control optim. 28, 711-719 (1990) · Zbl 0718.49004
[40] Gu, G.: Stabilizability conditions of multivariable uncertain systems via output feedback. IEEE trans. Autom. control 35, 925-927 (1990) · Zbl 0719.93068
[41] Hagander; P.; Bernhardsson, B.: On the notion of strong stabilization. IEEE trans. Autom. control 35, 927-929 (1990) · Zbl 0719.93069
[42] Helmke; U.; Anderson, B.: Hermitian pencils and output feedback stabilization of scalar systems. Int. J. Control 56, 857-876 (1992) · Zbl 0760.93066
[43] Hermann; R.; Martin, C.: Applications of algebraic geometry to systems theory: part 1. IEEE trans. Autom. control 22, 19-25 (1977) · Zbl 0355.93013
[44] Hong, H.: Improvements in CAD-based quantifier elimination. Phd thesis (1990)
[45] Hotz; A.; Skelton, R.: Covariance control theory.. Int. J. Control 45, 13-32 (1987) · Zbl 0626.93080
[46] Iwasaki; T.; Skelton, R.: All controllers for the general H$\infty $control problem: LMI existence conditions and state space formulas. Automatica 30, 1307-1317 (1994) · Zbl 0806.93017
[47] Iwasaki; T.; Skelton, R.: Parametrization of all stabilizing controllers via quadratic Lyapunov functions. J. optim. Theory applic. 77, 291-307 (1995) · Zbl 0826.93058
[48] Iwasaki; T.; Skelton, R.; Geromel, J.: Linear quadratic suboptimal control with static output feedback. Syst. control lett. 23, 421-430 (1994) · Zbl 0873.49021
[49] Johnson; T.; Athans, M.: On the design of optimal constrained dynamic compensators for linear constant systems. IEEE trans. Autom. control 15, 658-660 (1970)
[50] Kabamba; P.; Longman, R.: Exact pole assignment using direct or dynamic output feedback. IEEE trans. Autom. control 27, 1244-1246 (1982) · Zbl 0506.93024
[51] Kimura, H.: On pole assignment by gain output feedback. IEEE trans. Autom. control 20, 509-516 (1975) · Zbl 0309.93017
[52] Kimura, H.: A further result on the problem of pole assignment by gain output feedback. IEEE trans. Autom. control 22, 458-463 (1977) · Zbl 0355.93008
[53] Kimura, H.: On pole assignment by output feedback. Int. J. Control 28, 11-22 (1978) · Zbl 0392.93025
[54] Kreisselmeier, G.: Stabilization of linear systems by constant output feedback using the Riccati equation. IEEE trans. Autom. control 20, 556-557 (1975) · Zbl 0314.93012
[55] Kučera; V.; De Souza, C.: A necessary and sufficient condition for output feedback stabilizability. Automatica 31, 1357-1359 (1995) · Zbl 0831.93056
[56] Kwon; -H., B.; Youn, M. -J.: Eigenvalue-eigenvector assignment by output feedback. IEEE trans. Autom. control 32, 417-421 (1987) · Zbl 0611.93030
[57] Leventides; J.; Karcanias, N.: Arbitrary pole placement via low order dynamic output feedback controllers: a solution in closed form. Technical report CEC/EL-NK/135 (1995) · Zbl 0836.93021
[58] Leventides; J.; Karcanias, N.: Global asymptotic linearisation of the pole placement map: a closed-form solution for the constant output feedback problem. Automatica 31, 1303-1309 (1995) · Zbl 0836.93021
[59] Levine; W.; Athans, M.: On the determination of the optimal constant output feedback gains for linear multivariable systems. IEEE trans. Autom. control 15, 44-48 (1970)
[60] Levine; W.; Johnson, T. L.; Athans, M.: Optimal limited state variable feedback controllers for linear systems. IEEE trans. Autom. control 16, 785-793 (1971)
[61] Magni, J.: On exact pole placement by output feedback: part 3. Int. J. Control 45, 2021-2033 (1987) · Zbl 0637.93026
[62] Magni; J.; Champetier, C.: A general framework for pole assignment algorithms. Proc. 27th IEEE trans. Autom. control 36, 1105-1111 (1988) · Zbl 0754.93029
[63] Mrtensson, B.: The order of any stabilizing regulator is sufficient a priori information for adaptive stabilization. Syst. control lett. 6, 87-91 (1985) · Zbl 0564.93055
[64] Miminis, G.: A direct algorithm for pole assignment of time invariant linear systems using output feedback. Proc. 24th IEEE conf. On decision and control Fort Lauderdale, 541-547 (1985)
[65] Misra; P.; Patel, R.: Numerical algorithms for eigenvalue assignment by constant and dynamic output feedback. IEEE trans. Autom. control 34, 579-588 (1989) · Zbl 0683.93042
[66] Moerder; D.; Calise, A.: Convergence of a numerical algorithm for calculating optimal output feedback gains. IEEE trans. Autom. control 30, 900-903 (1985) · Zbl 0576.93024
[67] Moore, B.: On the flexibility offered by state feedback in multivariable control. IEEE trans. Autom. control 21, 689-692 (1976) · Zbl 0332.93047
[68] Nemirovskii, A.: Several NP-hard problems arising in robust stability analysis. Math. control, sig. Syst. 6, 99-105 (1993) · Zbl 0792.93100
[69] Nett; C.; Bernstein, D.; Haddad, W.: Minimal complexity control law synthesis, part I: Problem formulation and reduction to optimal static output feedback. Proc. American control conf., 2056-2064 (1989)
[70] O’Reilly, J.: Optimal instantaneous output feedback controllers for discrete time systems with inaccessible state. Int. J. Syst. sci. 9, 9-16 (1978)
[71] Peres; P.; Geromel, J.; Souza, S.: Optimal H2 control by output feedback. Proc. 32nd IEEE conf. On decision and control, 102-107 (1993)
[72] Pérez; F.; Abdallah, C.; Dorato, P.; Docampo, D.: Algebraic tests for output stabilizability. Proc. 32nd IEEE conf. On decision and control, 2385-2386 (1993)
[73] Poljak; S.; Rohn, J.: Checking robust nonsin-gularity is NP-hard. Math. control, sig. Syst. 6, 1-9 (1993) · Zbl 0780.93027
[74] Rosenthal; J.; Wang, X.: Output feedback pole placement with dynamic compensators. Technical report BS-R9516 (1995) · Zbl 0938.93026
[75] Rosenthal; J.; Schumacher, J.; Willems, J.: Generic eigenvalue assignment by memoryless real output feedback. Technical report BS-R9438 (1994) · Zbl 0877.93057
[76] Schumacher, J.: Compensator synthesis using (C,A, B) -pairs. IEEE trans. Autom. control 25, 1133-1138 (1980) · Zbl 0483.93035
[77] Seidenberg, A.: A new decision method for elementary algebra. Ann. math. 60, 365-374 (1954) · Zbl 0056.01804
[78] Skelton; R.; Iwasaki, T.: Lyapunov and covariance controllers. Int. J. Control 57, 519-536 (1993) · Zbl 0769.93069
[79] Söderström, T.: On some algorithms for design of optimal constrained regulators. IEEE trans. Autom. control 23, 1100-1101 (1978) · Zbl 0388.93019
[80] Srinithkumar, S.: Eigenvalue/eigenvector assignment using output feedback. IEEE trans. Autom. control 23, 79-81 (1978) · Zbl 0369.93016
[81] Syrmos; V.; Lewis, F.: Output feedback eignestructure assignment using two Sylvester equations. IEEE trans. Autom. control 38, 495-499 (1993) · Zbl 0791.93035
[82] Syrmos; V.; Lewis, F.: A bilinear formulation for the output feedback problem in linear systems. IEEE trans. Autom. control 39, 410-414 (1994) · Zbl 0800.93374
[83] Syrmos; V.; Syrmos, G.: Computational design technique for reduced-order compensators. IEEE trans. Autom. control 37, 1774-1778 (1992) · Zbl 0778.93033
[84] Syrmos; V.; Lewis, F.; Zagalak, P.; Kučera, V.: A generalized Bezout equation in output feedback design. Proc. 31st IEEE conf. On decision and control, 3590-3594 (1992)
[85] Tarski, A.: A decision method for elementary algebra and geometry. (1951) · Zbl 0044.25102
[86] Toivonen, H.: A globally convergent algorithm for the optimal constant output feedback problem. Int. J. Control 41, 1589-1599 (1985) · Zbl 0574.93023
[87] Toker, O.; Özbay, H.: On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback. Proc. American control conf., 2056-2064 (1995)
[88] Trofino-Neto; A.; Kučera, V.: Stabilization via static output feedback. IEEE trans. Autom. control 38, 764-765 (1993) · Zbl 0785.93078
[89] Vardulakis, A.: A sufficient condition for n specified eigenvalues to be assigned under constant output feedback. IEEE trans. Autom. control 20, 428-429 (1975) · Zbl 0301.93034
[90] Vidyasagar, M.: Control system synthesis: A factorization approach. (1985) · Zbl 0655.93001
[91] Wang, X.: Grassmanian, central projection and output feedback pole assignment of linear systems. IEEE trans. Autom. control 41, 786-794 (1996) · Zbl 0878.93031
[92] Wei, K.: Stabilization of a linear plant via a stable compensator having no real unstable zeros. Syst. control lett. 15, 259-264 (1990) · Zbl 0724.93066
[93] Willems; J.; Hesselink, W.: Generic properties of the pole placement problem. Proc. 7th IFAC world congress, 1725-1729 (1978)
[94] Yasuda; K.; Skelton, R.; Grigoriadis, K.: Covariance controllers: a new parametrization of the class of all stabilizing controllers. Automatica 29, 785-788 (1993) · Zbl 0771.93010
[95] Youla; D.; Bongiorno, J.; Lu, C.: Single-loop feedback stabilization of linear multivariable dynamical systems. Automatica 10, 159-173 (1974) · Zbl 0276.93036
[96] Zhu; G.; Grigoriadis, K.; Skelton, R.: Covariance control design for the hubble space telescope. J. guidance, control, dyn. 18, 230-236 (1995)