zbMATH — the first resource for mathematics

Transputer implementation of block regularized filtering. (English) Zbl 0872.93054
Summary: A novel approach to parallel transputer implementation of a regularized exponential parameter tracking is described. The proposed block regularized exponential algorithm allows to define and automatically adjust mean value of an alternative covariance of the estimated parameters in the boundaries of blocks of processed data. The alternative mean tracks in blocks the current parameter estimates. That is why the influence of the regularization on the parameter estimates is reduced, and the algorithm remains compatible with the completely pipelined parallel transputer implementation.
93C83 Control/observation systems involving computers (process control, etc.)
93B40 Computational methods in systems theory (MSC2010)
65Y05 Parallel numerical computation
93E10 Estimation and detection in stochastic control theory
Full Text: Link EuDML
[1] G. J. Bierman: Factorisation Methods for Discrete Sequential Estimation. Academic Press, New York 1977. · Zbl 0372.93001
[2] M. J. Flynn: Very high speed computing systems. IEEE Proc. 54 (1966), 1901-1909.
[3] F. M. F. Gaston G. W. Irwin: The systolic approach to information Kalman filtering. Internat. J. Control 15 (1989), 1, 225-228. · Zbl 0683.93081
[4] F. M. F. Gaston G. W. Irwin J. G. McWhirter: Systolic square root covariance Kalman filtering. J. VLSI Signal Processing 2 (1990), 37-49.
[5] W. M. Gentleman H. T. Kung: Matrix triangularisation by systolic arrays. Proc. SPIE, Vol. 298, Real Time Signal Processing IV, 1981, pp. 19-26.
[6] T. Hägglund: The problem of forgetting old data in recursive estimation. Proceedings of the IFAC Workshop on Adaptive Systems in Control and Signal Processing, San Francisco, California 1983.
[7] C. A. R. Hoare: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs, N. J. 1985. · Zbl 0637.68007
[8] K. Hwang F. A. Briggs: Computer Architecture and Parallel Processing. McGraw Hill, New York 1985. · Zbl 0534.68006
[9] J. Kadlec: A joint criterion for exponential directional and mixed parameter tracking. Preprints of the International Symposium on Adaptive Systems in Control and Signal Processing (ACASP’92) Conference, Grenoble 1992, pp. 687-692.
[10] J. Kadlec: A recursive Gramm-Schmidt identification with directional tracking of parameters. Preprints of the the 9-th IFAC/IFORS Symposium on Identification and System Parameter Estimation, Budapest 1991, pp. 1707-1712.
[11] J. Kadlec F. M. F. Gaston G. W. Irwin: Implementation of the regularized parameter estimator. Proceedings of the 1992 IEEE Workshop on VLSI and Signal Processing, Napa 1992, pp. 520-529.
[12] J. Kadlec F. M. F. Gaston G. W. Irwin: Parallel implementation of restricted parameter tracking. Mathematics in Signal Processing (J. McWhirter, Oxford Publishers Press., Oxford 1992, pp. 315-326. · Zbl 0852.93063
[13] J. Kadlec F. M. F. Gaston G. W. Irwin: The block regularised parameter estimator and its parallel implementation. Automatica 31 (1995), 8, 1125-1136. · Zbl 0837.93045 · doi:10.1016/0005-1098(95)00015-O
[14] J. Kadlec N. N. Nakhaee: Alpha Bridge for MATLAB 4. World Transputer Congress WTC 95, UK 1995
[15] R. Kulhavý: Directional tracking of regression-type model parameters. Preprints of the 2nd IFAC Workshop on Adaptive Systems in Control and Signal Processing, Lund 1986, pp. 97-102.
[16] R. Kulhavý: Restricted exponential forgetting in real-time identification. Automatica 23 (1987), 589-600. · Zbl 0634.93073 · doi:10.1016/0005-1098(87)90054-9
[17] R. Kulhavý B. Zarrop: On a general concept of forgetting. Internat. J. Control 58 (1993), 4, 905-924. · Zbl 0786.93060 · doi:10.1080/00207179308923034
[18] R. Kulhavý M. Kárný: Tracking of slowly varying parameters by directional forgetting. Preprints 9th IFAC World Congress, Budapest 1984, pp. 178-183, 1984.
[19] H. T. Kung C. E. Leiserson: Algorithms for VLSI processor arrays. Introduction to VLSI systems (C. Mead and L. Conway, Addison-Wesley, Reading, Mass. 1980.
[20] S. Y. Kung: VLSI Array Processors. Prentice Hall, Englewood Cliffs, N. J. 1988.
[21] F. D. Ling D. Manolakis J. G. Proakis: A recursive modified Gram-Schmidt algorithm for least squares estimation. IEEE Trans. Acoust. Speech Signal Process. 34 (1986), 829-835.
[22] L. Ljung S. Gunnarsson: Adaptation and tracking in system identification – a survey. Automatica 26 (1990), 7-21. · Zbl 0714.93053 · doi:10.1016/0005-1098(90)90154-A
[23] L. Ljung T. Söderström: Theory and Practice of Recursive Identification. MIT Press, Cambridge, MA 1983. · Zbl 0548.93075
[24] J. G. McWhirter: Recursive least squares minimisation using a systolic array. Proc. SPIE 431, Real Time Signal Processing VI, pp. 105, 1983. · Zbl 0734.65032
[25] J. G. McWhirter: Algorithmic engineering – an emerging discipline. SPIE Vol. 1152, Advanced Algorithms and Architectures for Signal Processing IV, pp. 2-15, 1989.
[26] J. E. Parkum N. K. Poulsen J. Holst: Recursive forgetting algorithms. Internat. J. Control 55 (1992), 109-128. · Zbl 0742.93044 · doi:10.1080/00207179208934228
[27] V. Peterka: Bayesian approach to system identification. Trends and Progress in System Identification (P. Eykhoff, Pergamon Press, Eindhoven 1981, Chap. 8, pp. 239-304. · Zbl 0451.93059
[28] T. J. Shepherd J. G. McWhirter J. E. Hudson: Parallel weight extraction from a systolic adaptive beamformer. Proc. IMA Internat. Conf. on Mathematics in Signal Processing, Warwick 1988, pp. 775-790.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.