zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
PID control of a chaotic system: An application to an epidemiological model. (English) Zbl 0872.93060
An epidemiological model describing the dynamics of a childhood disease within a given population is considered. After discretization, the nonlinear model has as state variables the number of susceptible individuals, the number of infective individuals and the number of cases reported yearly and as the control variable the vaccination rate. As the model is not known explicitly, the feedback PID control law is used, derived from the number of cases reported yearly. Stability, bifurcation and sensitivity analysis were performed. As the policy is bounded, the control action is aimed at reducing rather than suppressing chaos.

93C95Applications of control theory
37D45Strange attractors, chaotic dynamics
93C10Nonlinear control systems
34C23Bifurcation (ODE)
Full Text: DOI
[1] Arnol’d, V.I.: Geometrical methods in the theory of ordinary differential equations. (1993)
[2] Aron, J.L.: Multiple attractors in response to a vaccination program. Theor. pop. Biol. 38, 58-67 (1990) · Zbl 0699.92016
[3] Aron; L., J.; Schwartz, I. B.: Seasonality and period-doubling bifurcations in an epidemic model. J. theor. Biol. 110, 665-679 (1984)
[4] Chang; -C., H.; Chen, L. -H.: Bifurcation charac-teristics of nonlinear systems under conventional PID control. Chem. engng sci. 39, 1127-1142 (1984)
[5] Chen, G.: Control and synchronization of chaotic systems (a bibliography). (1996)
[6] Chen; G.; Dong, X.: On feedback control of chaotic dynamic systems. Int. J. Bifurcation chaos 2, 407-411 (1992) · Zbl 0875.93176
[7] Chen; G.; Dong, X.: From chaos to order-perspectives and methodologies in controlling chaotic nonlinear dynamical systems. Int. J. Bifurcation chaos 3, 1363-1409 (1993) · Zbl 0886.58076
[8] Dietz, K.: The incidence of infectious diseases under the influence of seasonal fluctuations. Mathematical models in medicine, 1-15 (1976) · Zbl 0333.92014
[9] Doedel; E.; Keller, H. B.; Kernevez, J. P.: Numerical analysis and control of bifurcation problems: (I) bifurcation in finite dimensions. Int. J. Bifurcation chaos 1, 493-520 (1991) · Zbl 0876.65032
[10] Eckmann; P., J.; Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. mod. Physics 57, 617-656 (1985) · Zbl 0989.37516
[11] Fine; M., P. E.; Clarkson, J. A.: Measles in england and wales. I. an analysis of factors underlying seasonal patterns. Int. J. Epidemiol. 11, 5-14 (1982)
[12] Fowler, T.B.: Application of stochastic control techniques to chaotic nonlinear systems. IEEE trans. Autom. control 34, 201-205 (1989) · Zbl 0677.93072
[13] Greenhalgh, D.: Vaccination in density-independent epidemic models. Bull. math. Biol. 54, 733-758 (1992) · Zbl 0766.92020
[14] Guckenheimer; J.; Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. (1986) · Zbl 0515.34001
[15] Jackson; A., E.; Hübler, A.: Periodic entrainment of chaotic logistic map dynamics. Physica D 44, 407-420 (1990) · Zbl 0706.58035
[16] Jacobs; R., O. L.; Ballance, D. J.; Horwood, J. W.: Fishery management as a problem in feedback control. Automatica 27, 627-639 (1991)
[17] Kermack; O., W.; Mckendrick, A. G.: Mathemati-cal theory of epidemics. Proc. R. Soc. London 115, 700-721 (1927) · Zbl 53.0517.01
[18] Khibnik; I., A.; Kuznetsov, Yu.A.; Levitin, V. V.; Nikolaev, E. V.: Continuation techniques and interactive software for bifurcation analysis of odes and iterated maps. Physica D 62, 360-370 (1993) · Zbl 0784.34030
[19] Kot; M.; Schaffer, W. M.; Truty, G. L.; Graser, D. J.; Olsen, L. F.: Changing criteria for imposing order. Ecol. modell. 43, 75-110 (1988)
[20] Kuznetsov, Yu.A.: Elements of applied bifurcation theory. (1995) · Zbl 0829.58029
[21] Kuznetsov; Yu.A.; Piccardi, C.: Bifurcation analysis of periodic SEIR and SIR epidemic models. J. math. Biol. 32, 109-121 (1994) · Zbl 0786.92022
[22] London; P., W.; Yorke, J. A.: Recurrent outbreaks of measles, chicken pox and mumps. I. seasonal variations in contact rates. Am. J. Epidemiol. 98, 453-468 (1973)
[23] Mcdermott; E., P.; Chang, H. -C.; Rinker, R. G.: Experimental investigation of controller-induced bifurca-tion in a fixed-bed autothermal reactor. Chem. engng sci. 40, 1355-1366 (1985)
[24] Martin, R.B.: Optimal control drug scheduling of cancer chemotherapy. Automatica 28, 1113-1123 (1992)
[25] Ogorzalek, M.J.: Taming chaos-part I: Synchroni-zation. IEEE trans. Circuits syst. 40, 693-699 (1993)
[26] Ogorzalek, M.J.: Taming chaos-part II: Control. IEEE trans. Circuits syst. 40, 700-706 (1993) · Zbl 0850.93354
[27] Olsen; F., L.; Truty, G. L.; Schaffer, W. M.: Oscillations and chaos in epidemics: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor. pop. Biol. 33, 344-370 (1988) · Zbl 0639.92012
[28] Ott; E.; Grebogi, C.; Yorke, J. A.: Controlling chaos. Phys. rev. Lett. 64, 1196-1199 (1990) · Zbl 0964.37501
[29] Romeiras; J., F.; Ott, E.; Grebogi, C.; Dayawansa, W. P.: Controling chaotic dynamical systems. Proc. American control conf. (1991)
[30] Schaffer; M., W.; Kot, M.: Nearly one dimensional dynamics in an epidemic. J. theor. Biol. 112, 403-427 (1985)
[31] Schwartz, I.B.: Multiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models. J. math. Biol. 21, 347-361 (1985) · Zbl 0558.92013
[32] Schwartz; B., I.; Smith, H. L.: Infinite subharmonic bifurcation in an SEIR epidemic model. J. math. Biol. 18, 233-253 (1983) · Zbl 0523.92020
[33] Seydel, R.: Tutorial on continuation. Int. J. Bifurcation chaos 1, 3-11 (1991) · Zbl 0760.34014
[34] Smith, H.L.: Subharmonic bifurcation in an S-I-R epidemic model. J. math. Biol. 17, 163-177 (1983) · Zbl 0578.92023
[35] Smith, H.L.: Multiple stable subharmonics for a periodic epidemic model. J. math. Biol. 17, 179-190 (1983) · Zbl 0529.92018
[36] Sprott; C., J.; Rowlands, G.: Chaos data analyzer. (1992) · Zbl 1194.37141
[37] Vidyasagar, M.: Nonlinear systems analysis. (1993) · Zbl 0900.93132
[38] Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. (1990) · Zbl 0701.58001