×

zbMATH — the first resource for mathematics

Relative fundamental class in Deligne cohomology and application. (Classe fondamentale relative en cohomologie de Deligne et application.) (French) Zbl 0873.32011
Let \(S\) be a reduced complex analytic finite-dimensional space and \(X\) the graph of local analytic family \((X_s)_{s\in S}\) of \(n-\)cycles of complex analytic manifold \(Z\) parametrized by \(S.\) The objective of this article is to construct the \(S\)-relative fundamental class of the family \((X_s)_{s\in S}\) in Deligne cohomology.

MSC:
32C36 Local cohomology of analytic spaces
32C30 Integration on analytic sets and spaces, currents
32G13 Complex-analytic moduli problems
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] [A.N] A. Andréotti, F. Norguet: La convexité holomorphe dans l’espace analytique des cycles d’une variété algébrique. Ann. Sc. Norm. Pisa21 (1947) 31-82
[2] [B] A. Borel: Intersection cohomology. Progress in Mathematics-Birkhäuser80 (1984) · Zbl 0553.14002
[3] [Be] A. Beilinson: Higher régulators and values of L-functions. J. Soviet. Math.30 (1985) 2034-2070 · Zbl 0588.14013 · doi:10.1007/BF02105861
[4] [B.M] D. Barlet, J. Magnuson: à paraître
[5] [B.V] D. Barlet, J. Varouchas: Fonctions holomorphes sur l’espace des cycles. Bulletin de la Société Mathématique de France117, 329-341
[6] [B.S] C. Banica, O. Stanasila: Méthodes algébriques dans la théorie globale des espaces complexes. Gauthier-Villars, Paris 1977
[7] [B1] D. Barlet: Espace analytique réduit des cycles analytiques complexes compacts d’un espace analytique réduit ... Sém. F. Norguet?Lecture Notes in Mathematics482 (1975) 1-158 · doi:10.1007/BFb0080243
[8] [B2] D. Barlet: Familles analytiques de cycles et classes fondamentales relatives. Sém. F. Norguet?Lecture Notes in Mathematics807 (1980) 1-24 · doi:10.1007/BFb0090873
[9] [B2] D. Barlet: Faisceau ? sur un espace analytique de dimension pure. Sém. F. Norguet-Lecture Notes in Mathematics670 (1978) 187-204 · doi:10.1007/BFb0064400
[10] [C] F. Campana: Variations de fibrés vectories. Lectures Notes in Mathematics670 (1977) 312-334 · doi:10.1007/BFb0064406
[11] [Cartano] H. Cartan: Collected Works, Volume II. Springer-Verlag (1979)
[12] [D] P. Deligne: Le Déterminant de la Cohomologie. Contemporary Mathematics67 (1985) 95-177
[13] [E.Z] F. El Zein: Complexe dualisant et application à la classe fondamentale d’un cycle. Bulletin de la Société Mathématique de France. Mémoire58 (1978) 5-93
[14] [E.Z] F. El Zein, S. Zucker: Extendability of Normal Functions associated to Algebraic Cycles. Annals of Mathematics studies104 (1984) 249-288 · Zbl 0545.14017
[15] [E.V] H. Esnault, E. Viehweg: Deligne-Beilinson cohomology. Perspectives in Math. Academic Press4 (1987) 43-92
[16] [K] M. Kaddar: Constructions cohomologiques dans l’espace des cycles. Thèse d’Université de Nancy I (1994)
[17] [L] D.I. Liebermann: Compactness of Chow scheme: Application to automorphisms and deformations of Kähler manifolds. Sém. F. Norguet?Lectures Notes670 (1978) 140-185
[18] [S.T] Y. Siu, G. Trautmann: Gap sheaves and extension of coherent analytic subsheaves. Lectures Notes in Mathematics172 (1971) · Zbl 0208.10403
[19] [Ve] J.L. Verdier: Classe d’homologie d’un cycle. Astérisque36-37 (1976) 101-151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.