van der Hofstad, R.; den Hollander, F.; König, W. Central limit theorem for the Edwards model. (English) Zbl 0873.60009 Ann. Probab. 25, No. 2, 573-597 (1997). The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. The authors prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by J. Westwater [in: Trends and developments in the eighties. Bielefeld Encounters Math. Phys. 4 and 5, 384-404 (1985; Zbl 0583.60066)]. The scaled variance is characterized in terms of the largest eigenvalue of a one-parameter family of differential operators, introduced and analyzed by the first two authors [Commun. Math. Phys. 169, No. 2, 397-440 (1995; Zbl 0821.60078)]. It turns out to be independent of the strength of self-repellence and to be strictly smaller than one, which is the value for free Brownian motion. Reviewer: M.Iosifescu (Bucureşti) Cited in 4 ReviewsCited in 13 Documents MSC: 60F05 Central limit and other weak theorems 60J55 Local time and additive functionals 60J65 Brownian motion Keywords:Edwards model; transformed path measure; law of large numbers; self-repellence Citations:Zbl 0583.60066; Zbl 0821.60078 PDF BibTeX XML Cite \textit{R. van der Hofstad} et al., Ann. Probab. 25, No. 2, 573--597 (1997; Zbl 0873.60009) Full Text: DOI Link OpenURL References: [1] Abramowitz, M. and Stegun, I. (1970). Handbook of Mathematical Functions, 9th ed. Dover, New York. · Zbl 0171.38503 [2] Biane, P., Le Gall, J.-F. and Yor, M. (1987). Un processus qui ressemble au pont Brownien. Séminaire de Probabilités XXI. Lecture Notes in Math. 1247 270-275. Springer, Berlin. · Zbl 0621.60086 [3] Biane, P. and Yor, M. (1988). Sur la loi des temps locaux Browniens pris en un temps exponentiel. Séminaire de Probabilités XXII. Lecture Notes in Math. 1321 454-466. Springer, Berlin. · Zbl 0652.60081 [4] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. Wiley, New York. · Zbl 0592.60049 [5] Fitzsimmons, P., Pitman, J. and Yor, M. (1993). Markovian bridges: construction, palm intersections, and splicing. In Seminar on Stochastic Processes 1992 102-133. Birkhäuser, Basel. · Zbl 0844.60054 [6] van der Hofstad, R. and den Hollander, F. (1995). Scaling for a random polymer. Comm. Math. Phys. 169 397-440. · Zbl 0821.60078 [7] Jeulin, T. (1985). Application de la théorie du grossissement a l’étude du temps locaux Browniens. In Grossissements de Filtrations. Lecture Notes in Math. 1118 197-304. Springer, Berlin. [8] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Springer, New York. · Zbl 0734.60060 [9] K önig, W. (1996). A central limit theorem for a one-dimensional polymer measure. Ann. Probab. 24 1012-1035. · Zbl 0862.60018 [10] Perkins, E. (1982). Local time is a semimartingale. Z. Wahrsch. Verw. Gebiete 60 79-117. · Zbl 0468.60070 [11] Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motion. Springer, Berlin. · Zbl 0731.60002 [12] Westwater, J. (1984). On Edwards’ model for long polymer chains. In Trends and Developments in the Eighties. Bielefeld Encounters in Mathematical Physics IV/V (S. Albeverio and P. Blanchard, eds.). World Scientific, Singapore. · Zbl 0431.60100 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.