Girko, V. L.; Repin, K. Yu. The quarter-of-circumference law. (English. Russian original) Zbl 0873.60024 Theory Probab. Math. Stat. 50, 67-70 (1995); translation from Teor. Jmovirn. Mat. Stat. 50, 66-69 (1994). The authors consider an asymmetric matrix \((\xi_{ij})_{i,j=1}^n\), where the elements \(\xi_{ij}\) are independent, \(E \xi_{ij}=0\), \(\text{Var }\xi_{ij}=n^{-1}\sigma^2\), \(0\leq \sigma\leq C<\infty\) and the Lindeberg condition is satisfied, and proved that for \(V_n(x)=n^{-1}\sum_1^n\chi(\sqrt {\lambda_k}<x)\), \[ p\lim_{n\to\infty}V_n(x)= \begin{cases} 0, &x<0,\\ \pi^{-1}\sigma^{-2} \int_0^x (4\sigma^2-u^2)^{1/2} du, &0\leq x\leq 2\pi,\\ 1, &x>2\pi, \end{cases} \] i.e., the limit distribution density is a quarter of a circumference. Reviewer: N.Renganathan (Annamalai Nagar) MSC: 60F99 Limit theorems in probability theory 60E99 Distribution theory Keywords:random matrix; eigenvalues; spectral functions PDFBibTeX XMLCite \textit{V. L. Girko} and \textit{K. Yu. Repin}, Theory Probab. Math. Stat. 50, 1 (1994; Zbl 0873.60024); translation from Teor. Jmovirn. Mat. Stat. 50, 66--69 (1994)