×

Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations. (English) Zbl 0873.65122

Using an implicit form of a given Volterra-Hammerstein integral equation introduced for Fredholm-Hammerstein equations by S. Kumar and I. H. Sloan [Math. Comput. 48, 585-593 (1987; Zbl 0616.65142)], and adapted for Volterra-type equations by H. Brunner [Appl. Numer. Math. 9, No. 3-5, 235-247 (1992; Zbl 0761.65103)] the authors approximate its solution by using collocation techniques for a Chebyshev spectral interpolant. The resulting integrals are discretized by employing Chebyshev-Lobatto quadrature formulas. The convergence results are complemented by a numerical illustration.

MSC:

65R20 Numerical methods for integral equations
45G10 Other nonlinear integral equations

Software:

BRENTM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Askey, R., Mean convergence of orthogonal series and lagrange interpolation, Acta Math. Acad. Sci. Hungar, 23, 71-85 (1972) · Zbl 0253.41003
[2] Baker, C. T.H., The Numerical Treatment of Integral Equations (1977), Clarendon Press: Clarendon Press Oxford · Zbl 0217.53103
[3] Bellman, R. E.; Kalaba, R. E., Quasilinearization and Nonlinear Boundary-Value Problems (1965), Elsevier: Elsevier New York · Zbl 0139.10702
[4] Brunner, H., Implicitly linear collocation methods for nonlinear for Volterra equations, Appl. Numer. Math., 9, 235-247 (1992) · Zbl 0761.65103
[5] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), Springer: Springer New York · Zbl 0658.76001
[6] Cheney, E. W., Introduction of Approximation Theory (1966), McGraw-Hill: McGraw-Hill New York · Zbl 0161.25202
[7] Conway, J. B., Function of One Complex Variables (1986), Springer: Springer New York
[8] Davis, P. J., Interpolation and Approximation (1963), Blaisdell: Blaisdell New York · Zbl 0111.06003
[9] Ganesh, M.; Joshi, M. C., Numerical Solvability of Hammerstein integral equations of mixed type, IMA J. Numer. Anal., 5, 21-31 (1991) · Zbl 0719.65093
[10] Graham, I. G.; Sloan, I. H., On the compactness of certain integral operators, J. Math. Anal. Appl., 68, 580-594 (1979) · Zbl 0406.45021
[11] Guoqiang, H., Asymptotic error expansion of a collocation method for Volterra-Hammerstein integral equations, Appl. Numer. Math., 13, 357-369 (1993) · Zbl 0799.65150
[12] Kaneko, H.; Xu, Y. S., Degenerate kernel method for Hammerstein equations, Math. Comp., 56, 141-148 (1991) · Zbl 0711.65118
[13] Kantorovich, L. V.; Akilov, G. P., Functional Analysis (1982), Pergamon Press: Pergamon Press Oxford · Zbl 0484.46003
[14] Kumar, S.; Sloan, I. H., A new collocation-type method for Hammerstein integral equations, Math. Comp., 48, 123-199 (1987)
[15] Lardy, L. J., A variation of Nysttrom’s method for Hammerstein equations, J. integral Equations, 3, 43-60 (1981) · Zbl 0471.65096
[16] Maday, Y., Resultats D’approximation optimaux pour les operateurs d’interpolation polynomiale, C.R. Acad. Sci. Paris, 312, 705-710 (1991) · Zbl 0724.65004
[17] Maday, Y.; Quarteroni, A., Legendre and Chebyshev spectral approximations of Burgers equations, Numer. Math., 37, 321-332 (1981) · Zbl 0452.41007
[18] Maday, Y.; Quarteroni, A., Spectral and pseudo-spectral approximations of Navier-Stokes equations, SIAM J. Numer. Anal., 19, 761-780 (1982) · Zbl 0503.76035
[19] More, J. J.; Cosnard, M. Y., ALGORITHM 554: BRENTM, A fortran subroutine for the numerical solution of nonlinear equations, ACM Trans. Math. Software, 6, 240-251 (1980) · Zbl 0435.65053
[20] Nevai, G. P., Mean convergence of Lagrange interpolation (III), Trans. Amer. Math. Soc., 282, 669-698 (1984) · Zbl 0577.41001
[21] Tricomi, F. G., Integral Equations (1985), Dover: Dover New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.