×

Effect algebras and statistical physical theories. (English) Zbl 0874.06009

Summary: The dichotomic physical quantities of a physical system can be naturally hosted in a mathematical structure, called effect algebra, of which orthomodular posets an Boolean algebras are particular examples. We examine how effect algebras arise inside statistical physical theories and, conversely, we study to what extent an effect algebra can be taken as a primitive structure on which a satisfactory statistical physical model equipped with a convex set of states can be constructed.

MSC:

06C15 Complemented lattices, orthocomplemented lattices and posets
82B03 Foundations of equilibrium statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1007/BF00676249 · Zbl 0839.03049 · doi:10.1007/BF00676249
[2] DOI: 10.1007/BF02302453 · Zbl 0868.03028 · doi:10.1007/BF02302453
[3] Cattaneo G., Il Nuovo Cimento 90 pp 1661– (1985)
[4] DOI: 10.1007/BF01889304 · doi:10.1007/BF01889304
[5] DOI: 10.1007/BF01889307 · doi:10.1007/BF01889307
[6] Kopka F., Math. Slovaca 44 pp 21– (1994)
[7] Pulmannova S., Demon. Math. 27 pp 687– (1994)
[8] DOI: 10.1007/BF02283036 · Zbl 1213.06004 · doi:10.1007/BF02283036
[9] DOI: 10.1007/BF00676246 · Zbl 0839.03045 · doi:10.1007/BF00676246
[10] DOI: 10.1007/BF01647093 · Zbl 0194.58304 · doi:10.1007/BF01647093
[11] DOI: 10.1088/0305-4470/28/12/007 · Zbl 0859.46049 · doi:10.1088/0305-4470/28/12/007
[12] DOI: 10.1016/0097-3165(71)90015-X · Zbl 0219.06007 · doi:10.1016/0097-3165(71)90015-X
[13] DOI: 10.1063/1.530316 · Zbl 0790.46054 · doi:10.1063/1.530316
[14] DOI: 10.1007/BF00672995 · doi:10.1007/BF00672995
[15] DOI: 10.1007/BF00672998 · doi:10.1007/BF00672998
[16] DOI: 10.1007/BF02302443 · Zbl 0872.60003 · doi:10.1007/BF02302443
[17] DOI: 10.1007/BF00668841 · Zbl 0645.60007 · doi:10.1007/BF00668841
[18] DOI: 10.1016/0034-4877(94)90039-6 · Zbl 0820.46054 · doi:10.1016/0034-4877(94)90039-6
[19] DOI: 10.1007/BF00687092 · doi:10.1007/BF00687092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.