How does truncation of the mask affect a refinable function? (English) Zbl 0874.42025

Summary: If the mask of a refinable function has infinitely many coefficients, or if the coefficients are irrational, then it is often replaced by a finite mask with coefficients with terminating decimal expansions when it comes to applications. This note studies how such truncation affects the refinable function.


42C15 General harmonic expansions, frames
26A30 Singular functions, Cantor functions, functions with other special properties
Full Text: DOI


[1] [CDM]A. Cavaretta, W. Dahmen, C. Micchelli, (1991): Stationary Subdivision. Memoirs of the American Mathematical Society, vol. 453, Providence, RI: AMS.
[2] [C]A. Cohen, (1989): Ondelettes, analyses multir?solutions et filtres miroirs en quadrature. Ph.D. Thesis, Universit? Paris-Dauphine (an extended version is (1992): Ondelettes et traitement num?rique du signal. Paris: Masson).
[3] [CD]A. Cohen, I. Daubechies, (1994):On a new technique to determine the regularity of a refinable function. Preprint, submitted to Rev. Mat. Iberoamericana.
[4] [CDF]A. Cohen, I. Daubechies, J. C. Feauveau, (1992):Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math.,45:485-500. · Zbl 0776.42020
[5] [CR]J. P. Conze, A. Raugi, (1990):Fonctions harmonique pour un op?rateur de transition et applications. Bull. Soc. Math. France,118:273-310. · Zbl 0725.60026
[6] [D1]I. Daubechies, (1988):Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math.,41:909-996. · Zbl 0644.42026
[7] [D2]I. Daubechies, (1992): Ten Lectures on Wavelets. CBMS-NSF Series in Applied Mathematics, Philadelphia, PA: SIAM. · Zbl 0776.42018
[8] [DaLa]I. Daubechies, J. C. Lagarias, (1991; 1992): Two-scale difference equations, I and II. SIAM J. Math. Anal.,22(5):1388-1410;23(4): 1031-1079. · Zbl 0763.42018
[9] [DyLe]N. Dyn, G. Levin, (1990):Interpolating subdivision schemes for the generation of curves and surfaces. In: Multivariate Interpolation and Approximation, W. Haussman and K. Jeller (eds.), Basel: Birkha?ser, pp. 91-106.
[10] [E]T. Eirola, (1992):Sobolev characterization of solutions of dilation equations. SIAM J. Math. Anal.,23:1015-1030. · Zbl 0761.42014
[11] [G]G. Gripenberg, (1993):Unconditional bases of wavelets for Sobolev spaces. SIAM J. Math. Anal.,24:1030-1042. · Zbl 0785.42013
[12] [HV]C. Herley, M. Vetterli, (1993):Wavelets and recursive filter banks. IEEE Trans. S.P.,41:2536-2556. · Zbl 0825.93871
[13] [He1]L. Herv?, (1992): M?thodes d’op?rateurs quasi-compacts en analyse multir?solution, applications ? la construction de bases d’ondelettes et ? l’interpolation. Th?se, Laboratoire de Probabilit?s, Universit? de Rennes-I.
[14] [He2]L. Herv?, (1992):R?gularit? et conditions de bases de Riesz pour les fonctions d’?chelle. C. R. Acad. Sci. Paris,315:1029-1032. · Zbl 0778.42026
[15] [He3]L. Herv?, (to appear):Construction et r?gularit? des fonctions d’?chelle. SIAM J. Math. Anal.
[16] [Hu]Y. Huang, (1993):On a nonlinear operator related to wavelets. Preprint Mathematics Department, Rutgers University.
[17] [M]S. Mallat, (1989):Multiresolution approximation and wavelet orthonormal bases of L 2 (R). Trans. Amer. Math. Soc.,315:69-88. · Zbl 0686.42018
[18] [MP]C. A. Micchelli, H. Prautzsch, (1989):Uniform refinement of curves. Linear Algebra Appl.,114/115:841-870. · Zbl 0668.65011
[19] [R]O. Rioul, (1992):Simple regularity criteria for subdivision schemes. SIAM J. Math. Anal.,23:1544-1576. · Zbl 0761.42016
[20] [V]L. Villemoes, (1992):Energy moments in time and frequency for two-scale difference equation solutions and wavelets. SIAM J. Math. Anal.,23:1519-1543. · Zbl 0759.39005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.