Riviere, Tristan Lines vortices in the \(U(1)\)-Higgs model. (English) Zbl 0874.53019 ESAIM, Control Optim. Calc. Var. 1, 77-167 (1996). From the paper: “For a given U(1)-bundle \(E\) over \(M=\mathbb{R}^3\setminus \{x_1,\dots,x_n\}\), where the \(x_i\) are \(n\) distinct points of \(\mathbb{R}^3\), we minimise the U(1)-Higgs action and we make an asymptotic analysis of the minimizers when the coupling constant tends to infinity. We prove that the curvature (= magnetic field) converges to a limiting curvature that we give explicitly and which is singular along line vortices which connect the \(x_i\)”. Reviewer: J.Muciño-Raymundo (Morelia) Cited in 27 Documents MSC: 53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills) 53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions Keywords:Higgs field; Ginzburg-Landau equations PDF BibTeX XML Cite \textit{T. Riviere}, ESAIM, Control Optim. Calc. Var. 1, 77--167 (1996; Zbl 0874.53019) Full Text: DOI EuDML References: [1] L. Almeida and F. Bethuel: Méthodes topologiques pour l’équation de Ginzburg-Landau, C.R.A.S, Paris, 320, 935-939, 1995. Zbl0826.35036 MR1328714 · Zbl 0826.35036 [2] F. Bethuel, H. Brezis and F. Hélein: Asymptotics for the minimization of a Ginzburg-Landau functional, Calculus of variations and PDE1, 123-148, 1993. Zbl0834.35014 MR1261720 · Zbl 0834.35014 [3] F. Bethuel, H. Brezis and F. Hélein: Ginzburg-Landau vortices, Birkhaüser, 1994. Zbl0802.35142 MR1269538 · Zbl 0802.35142 [4] F. Bethuel and T. Rivière: Vortices for a variational problem related to supraconductivity, Ann. Inst. Henri Poincaré, (analyse non linéaire), 12, 3, 243-303, 1995. Zbl0842.35119 MR1340265 · Zbl 0842.35119 [5] R. Bott and L. Tu: Differential forms in Algebraic Topology, Springer, 1986. Zbl0496.55001 MR658304 · Zbl 0496.55001 [6] H. Brezis, J.-M Coron and E. Lieb: Harmonic maps with defects, Comm. Math. Phys., 107, 649-705, 1986. Zbl0608.58016 MR868739 · Zbl 0608.58016 [7] H. Brezis, F. Merle and T. Rivière: Quantization effects for -∆u = u(1 - |u|2) in ℝ2, to appear in Arch. for rat. Mech. Analysis. Zbl0809.35019 · Zbl 0809.35019 [8] J. Fröhlich and M. Struwe: Variational problems on vector bundles, Commun. Math. Phys., 131, 431-464, 1990. Zbl0714.58012 MR1065892 · Zbl 0714.58012 [9] R. Hardt and L. Simon: Seminar on geometric Measure Theory, Birkhaüser, 1986. Zbl0601.49029 MR891187 · Zbl 0601.49029 [10] A. Jaffe and C. Taubes: Vortices and Monopoles, Birkhaüser, 1980. Zbl0457.53034 MR614447 · Zbl 0457.53034 [11] F.H. Lin: Solutions of Ginzburg-Landau equations and critical points of the renormalized energy, Ann. Inst. Henri Poincaré, (analyse nonlinéaire),12, 5, 599-622, 1995. Zbl0845.35052 MR1353261 · Zbl 0845.35052 [12] T. Rivière: Lignes de tourbillon dans le modèle abelien de Higgs, C.R.A.S., Paris, 321, 73-76, 1995. Zbl0840.35109 MR1340085 · Zbl 0840.35109 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.