# zbMATH — the first resource for mathematics

Existence and regularity of constant mean curvature hypersurfaces in hyperbolic space. (English) Zbl 0874.53050
Let $$\mathbb{H}^{n+1}$$ denote the upper halfspace model of the hyperbolic space and let $$\Omega$$ be a bounded domain in $$\mathbb{R}^n\subset \mathbb{H}^{n+1}_\infty$$ where $$\mathbb{H}^{n+1}_\infty$$ is the sphere at infinity of $$\mathbb{H}^{n+1}$$. Assume that $$\partial\Omega$$ is $$C^1$$. If $$H\in \mathbb{R}$$ with $$|H|<1$$, then there is a hypersurface $$M$$ with small singular set having constant mean curvature $$H$$ with respect to the inward pointing normal and boundary at infinity equal to $$\partial \Omega$$. If $$\partial \Omega$$ is in class $$C^{k,\alpha}$$, $$1\leq k\leq n-1$$ and $$0\leq \alpha\leq 1$$ or $$k=n$$ and $$0\leq \alpha< 1$$, then $$M\cup\partial\Omega$$ is close to infinity a $$C^{k,\alpha}$$ submanifold with boundary. It is shown that $$\partial\Omega$$ in $$C^{k,\alpha}$$ for $$k\geq n+1$$ and $$0<\alpha<1$$ and $$H=0$$ implies that $$M\cup \partial\Omega$$ is close to infinity a $$C^{k,\alpha}$$ submanifold with boundary if $$n$$ is even, but not necessarily if $$n$$ is odd. The corresponding study for minimal hypersurfaces is due to M. T. Anderson (existence) [Invent. Math. 69, 477-494 (1982; Zbl 0515.53042); Comment. Math. Helv. 58, 264-290 (1983; Zbl 0549.53058)] and R. Hardt and F.-H. Lin (regularity), see, e.g., F. H. Lin [Commun. Pure Appl. Math. 42, 229-242 (1989; Zbl 0688.49042)].

##### MSC:
 53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
##### Citations:
Zbl 0515.53042; Zbl 0549.53058; Zbl 0688.49042
Full Text:
##### References:
 [1] Anderson, M.,Complete minimal varieties in hyperbolic space, Invent Math.69, 477–494 (1982) · Zbl 0515.53042 [2] Anderson, M.,Complete minimal hypersurfaces in hyperbolic n-manifolds, Comment. Math. Helv.58, 264–290 (1983) · Zbl 0549.53058 [3] Anderson, M.,The Bernstein problem in complete Riemannian manifolds, PhD Thesis, University of California, Berkeley, 1981. [4] Allard, W.K.,On the first variation of a varifold, Ann. Math.,95, 417–491 (1972) · Zbl 0252.49028 [5] Alencar, H., Rosenberg, H.,Some remarks on the existence of hypersurfaces of constant mean curvature with a given boundary, or asymptotic boundary, in hyperbolic space, Preprint. · Zbl 0882.53044 [6] Baouendi, M.S., Goulaouic, C.,Régularité et théorie spectrale pour une classe d’opérateurs elliptiques dégénérés, Arch. Rat. Mech. Anal.34 361–379 (1969) · Zbl 0185.34901 [7] Baouendi, M.S., Goulaouic, C.,Etude de l’analyticité et de la régularité Gevrey pour une classe d’opérateurs elliptiques dégénérés, Ann. Sc. E. N. S., tome 4, fasc. 1 (1971) · Zbl 0231.35032 [8] Bombieri, E.,Regularity theory for almost minimal currents, Arch. Rat. Mech. Anal.78 99–130 (1982) · Zbl 0485.49024 [9] Bryant, R.,Surfaces of mean curvature one in hyperbolic space, Astérisque 154–155, Soc. Math. de France, 321–347 (1987) [10] Cheng, S.-Y., Yau, S.-T.,On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math.33 507–544 (1980) · Zbl 0506.53031 [11] Federer, H.,Geometric Measure Theory, Berlin- Heidelberg-New York 1969 · Zbl 0176.00801 [12] Fefferman, C.,Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math.103 395–416 (1976) · Zbl 0322.32012 [13] Graham, H.,The Dirichlet problem for the Bergman Laplacian, Comm. P.D.E.8 433–476, 563-641 (1983) · Zbl 0527.35031 [14] Gidas, B., Ni, W.M., Nirenberg, L.,Symmetry and related properties via the maximum principle, Commun. Math. Phys.68 209–243 (1979) · Zbl 0425.35020 [15] Gilberg, D., Trudinger, N.,Elliptic partial differential equations of second order, Springer-Verlag, 1977. [16] Hardt, R., Lin, F.-H.,Regularity at infinity for area-minimizing hypersurfaces in hyperbolic space, Invent. Math.88 217–224 (1987) · Zbl 0633.49020 [17] Korevaar, N.J., Kusner, R., Meeks III, W.H., Solomon, B.,Constant mean curvature surfaces in hyperbolic space, Amer. J. Math.114 1–43 (1992) · Zbl 0757.53032 [18] Kohn, J.J., Nirenberg, L.,Degenerated elliptic-parabolic equations of second order, Comm. Pure Appl. Math.20 797–872 (1967) · Zbl 0153.14503 [19] Lin, F.-H.,On the Dirichlet problem for minimal graphs in hyperbolic space, Invent. Math.96 593–612 (1989) · Zbl 0707.35028 [20] Lin, F.-H.,Asymptotic behavior of area-minimizing currents in hyperbolic space, Comm. Pure Appl. Math.42 229–242 (1989) · Zbl 0688.49042 [21] Li, P., Tam, L.-F.,Uniqueness and regularity of proper harmonic maps, Ann. of Math.137 167–201 (1993) · Zbl 0776.58010 [22] Li, P., Tam, L.-F.,Uniqueness and regularity of proper harmonic maps II, Indiana Math. J.42 591–635 (1993) · Zbl 0790.58011 [23] Nelli, B., Spruck, J.,On existence and uniqueness of mean curvature hypersurfaces in hyperbolic space, Preprint. · Zbl 0936.35069 [24] Simon, L.,Lectures on geometric measure theory, Proc. Center for Mathematical Analysis. Australian Nat. Univ. 3 (1983) · Zbl 0546.49019 [25] Umehara, M., Yamada, K.,Complete surfaces of constant mean curvature-1 in the hyperbolic 3-space, Ann. Math.137 611–638 (1993) · Zbl 0795.53006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.