Vertical fault detection from scattered data. (English) Zbl 0874.65009

This paper contains the problem of detecting vertical faults in explicit surfaces from sets of data points. In geology or geophysics, the reconstruction of a faulted surface from a set of scattered data points is a common problem. In this paper, the focus is on a method to detect vertical faults, modelled as jump discontinuities of the function \(f\) on the set \(F\). First, the authors establish a characterization of jump discontinuities for bivariate functions. Next, the authors derive a detection method of vertical faults in surfaces which takes as input a set of scattered data points. Finally, some numerical and graphical examples are given.
Reviewer: R.S.Dahiya (Ames)


65D17 Computer-aided design (modeling of curves and surfaces)
Full Text: DOI


[1] Arcangéli, R., Some applications of discrete \(D^m\) splines, (Lyche, T.; Schumaker, L., Mathematical Methods in Computer Aided Geometric Design (1989), Academic Press: Academic Press New York), 35-44 · Zbl 0676.41012
[2] Arge, E.; Floater, M., Approximating scattered data with discontinuities, Numer. Algorithms, 8, 149-166 (1994) · Zbl 0823.65014
[3] Bartle, R. G., The Elements of Real Analysis (1976), Wiley: Wiley New York · Zbl 0146.28201
[4] Chen, X.; Schmitt, F., Surface modelling of range data by constrained triangulation, CAD, 26, 632-645 (1994) · Zbl 0806.65008
[5] Franke, R.; Nielson, G., Surface approximation with imposed conditions, (Barnhill, R. E.; Boehm, W., Surfaces in CAGD (1983), North-Holland: North-Holland Amsterdam), 135-146
[6] Klein, P., Sur l’approximation et la représentation de surfaces explicites en présence de singularités, (Thèse 3e cycle (1987), Université Joseph Fourier-Grenoble I: Université Joseph Fourier-Grenoble I France)
[7] Laurent, P. J., Inf-convolution spline pour l’approximation de données discontinues, \(M^2 AN , RAIRO \), Anal. Numer, 20, 89-111 (1986) · Zbl 0696.41011
[8] Lee, D., Detection, classification, and measurement of discontinuities, SIAM J. Sci. Statist Comput., 12, 311-341 (1991) · Zbl 0724.65007
[9] Mallat, S.; Hwang, W. L., Singularity detection and processing with wavelets, IEEE Trans. Inform. Theory, 38, 617-643 (1992) · Zbl 0745.93073
[10] Manzanilla, R., Sur l’approximation de surfaces définies par une équation explicite, (Thèse (1986), Université de Pau et des Pays de l’Adour: Université de Pau et des Pays de l’Adour France)
[11] Serres, Ch., Sur la reconstruction de surfaces de type explicite présentant des failles, (Thèse (1992), Université de Pau et des Pays de l’Adour: Université de Pau et des Pays de l’Adour France)
[12] Torrens, J. J., Interpolación de superficies paramétricas con discontinuidades mediante elementos finitos, Aplicaciones, (Tesis, Publicaciones del Seminario Matemático Garcia de Galdeano, Serie II, Sección 2, no. 24 (1992), Universidad de Zaragoza: Universidad de Zaragoza Spain)
[13] Torrens, J. J., Approximation of parametric surfaces with discontinuities by discrete smoothing \(D^m\)-splines, (Laurent, P.-J.; Le Méhauté, A.; Schumaker, L. L., Wavelets, Images, and Surface Fitting (1994), A.K. Peters: A.K. Peters Wellesley), 485-492 · Zbl 0815.65017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.