zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The matrix sign function method and the computation of invariant subspaces. (English) Zbl 0874.65031
Summary: A perturbation analysis shows that if a numerically stable procedure is used to compute the matrix sign function, then it is competitive with conventional methods for computing invariant subspaces. Stability analysis of the Newton iteration improves an earlier result of {\it R. Byers} [Computational and combinatorial methods in systems theory, Sel. Pap. 7th Int. Symp. Math. Theory Networks Syst., Stockholm 1986, 185-200 (1986; Zbl 0597.65032)[and confirms that ill-conditioned iterates may cause numerical instability. Numerical examples demonstrate the theoretical results.

65F30Other matrix algorithms
65F15Eigenvalues, eigenvectors (numerical linear algebra)
Full Text: DOI