×

Nonlinear instability in an ideal fluid. (English) Zbl 0874.76026

Summary: Linearized instability implies nonlinear instability under certain rather general conditions. This abstract theorem is applied to the Euler equations governing the motion of an inviscid fluid. In particular, this theorem can be applied to all two-dimensional space periodic flows without stagnation points as well as to two-dimensional space-periodic shear flows.

MSC:

76E30 Nonlinear effects in hydrodynamic stability
76B47 Vortex flows for incompressible inviscid fluids
35Q35 PDEs in connection with fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] Bourguignon, J.; Brezis, H., Remarks on the Euler equation, J. Funct. Anal., Vol. 15, 4, 341-363 (1974) · Zbl 0279.58005
[2] Browder, F., On the spectral theory of elliptic differential operators, I, Math. Annalen, Vol. 142, 22-130 (1961) · Zbl 0104.07502
[3] Friedlander, S.; Vishik, M., Instability criteria for steady flows of a perfect fluid, Chaos, Vol. 2, No. 3, 455-460 (1992) · Zbl 1055.76518
[4] Gunther, N., On the motion of fluid in a moving container, Isvestia Akad. Nauk SSSR. Ser. Fiz.-Mat., Vol. 22, 9-30 (1928) · JFM 54.0495.03
[6] Kato, T., On classical solutions of the two-dimensional non-stationary Euler equation, Arch. Rat. Mech. Anal., Vol. 27, 188-200 (1968) · Zbl 0166.45302
[7] Lichtenstein, L., Über einige Existenzprobleme der Hydrodynamik homogener unzusammendrückbarer, reibunglosser Flussikeiten und die Helmgoltzschen Wirbelsalte, Math. Zeit., Vol. 32, 608 (1930) · JFM 56.1249.01
[8] Liu, V., An example of instability for the Navier-Stokes equations on the 2-dimensional torus, Comm. in PDE’s, Vol. 17, 11-12, 1995-2012 (1992) · Zbl 0781.35054
[9] Nussbaum, R., The radius of the essential spectrum, Duke Math. J., Vol. 37, 473-478 (1970) · Zbl 0216.41602
[10] Meshalkin, L.; Sinai, Y., Investigation of stability for a system of equations describing plane motion of a viscous incompressible fluid, Applied Math. and Mech., Vol. 25, 1140-1143 (1961)
[11] Temam, R., Local existence of \(C^∞\) solutions of the Euler equations of incompressible perfect fluids, Lectures Notes in Math., Vol. 565, 184-194 (1976) · Zbl 0355.76017
[12] Tollmien, W., Ein allgemeines Kriterium der Instabilitat laminar geschwindigkeits verteilungen, Nachr. Ges. Wiss. Gottingen, Math. Phys. Kl. Fachgruppe I, Vol. 1, 79-114 (1935) · JFM 61.0925.01
[13] Yudovich, V., The Linearization Method in Hydrodynamical Stability Theory, (Translations of Math. Monographs, Vol. 74 (1989), AMS), 170 · Zbl 0727.76039
[14] Yudovich, V., Example of secondary stationary flow or periodic flow appearing while a laminar flow of a viscous incompressible fluid loses its stability, Applied Math. and Mech., Vol. 29, No. 3, 453-467 (1965)
[16] Wolibner, W., Un théorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z., Vol. 37, 698-726 (1933) · Zbl 0008.06901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.