×

zbMATH — the first resource for mathematics

Merging of eigenvalues and resonances of a two-particle Schrödinger operator. (English. Russian original) Zbl 0875.35089
Theor. Math. Phys. 101, No. 2, 1320-1331 (1994); translation from Teor. Mat. Fiz. 101, No. 2, 235-252 (1994).
Summary: The existence of bound states and resonances of a two-particle discrete Schrödinger operator is proved. Their merging and dependence on the quasimomentum and coupling constant are studied.

MSC:
35Q40 PDEs in connection with quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81U05 \(2\)-body potential quantum scattering theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. 4, Academic Press, New York (1978). · Zbl 0401.47001
[2] T. Kato,Commun. Pure Appl. Math. 12, No. 3 (1959).
[3] L. D. Faddeev,Vestn. Leningr. Univ.,7, No. 2, 147 (1957).
[4] M. Sh. Birman,Vestn. Leningr. Univ.,13, No. 3, 163 (1961).
[5] D. R. Yafaev,Zap. Nauchn. Sem. LOMI,51, 203 (1975).
[6] J. Rauch,J. Funct. Anal.,35, 304 (1980). · Zbl 0432.35013 · doi:10.1016/0022-1236(80)90085-3
[7] B. Simon,J. Funct. Anal.,25, 338 (1977). · Zbl 0363.47014 · doi:10.1016/0022-1236(77)90042-8
[8] S. N. Lakaev,Teor. Mat. Fiz.,44, 381 (1980).
[9] S. N. Lakaev,Teor. Mat. Fiz.,91, 51 (1992).
[10] D. C. Mattis,Rev. Mod. Phys.,58, 361 (1986). · doi:10.1103/RevModPhys.58.361
[11] R. A. Minlos and S. N. Lakaev,Teor. Mat. Fiz.,39, 83 (1979).
[12] R. A. Minlos and Ya. G. Sinai,Teor. Mat. Fiz.,2, 230 (1970).
[13] V. A. Malyshev and R. A. Minlos,Gibbs Random Fields [in Russian], Nauka, Moscow (1985). · Zbl 0584.60062
[14] S. N. Lakaev,Trudy Seminara im I. G. Petrovskii,11, 210 (1986).
[15] S. Albeverio, F. Gesztesi, R. Hoeg-Kron, and H. Holden,Solvable Models in Quantum Mechanics [Russian translation], Mir, Moscow (1991).
[16] V. A. Trenogin,Functional Analysis [in Russian], Nauka, Moscow (1980).
[17] I. M. Gelfand and G. E. Shilov,Generalized Functions, Vol. 1 Properties and Operations, Academic Press, New York (1964). · Zbl 0115.33101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.